Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương trình tích

Nội dung Chuyên đề phương trình tích Bản PDF - Nội dung bài viết Chuyên Đề Phương Trình Tích Chuyên Đề Phương Trình Tích Tài liệu này bao gồm 17 trang, tóm tắt lý thuyết cần thiết về phương trình tích, phân tích dạng và hướng dẫn cách giải các dạng toán liên quan. Ngoài ra, tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao trong chuyên đề phương trình tích. Để giải phương trình tích (một ẩn), chúng ta cần tìm nghiệm cho từng phần tử có thể làm cho toán tử bằng 0. Các phương pháp phân tích đa thức thành nhân tử đóng vai trò quan trọng trong việc đưa phương trình về dạng phương trình tích. Bên cạnh đó, việc đặt ẩn phụ cũng giúp cho quá trình lời giải trở nên gọn gàng hơn. Trong phần II, ta sẽ vận dụng các phương pháp phân tích thành nhân tử và cách giải phương trình tích để đưa phương trình đã cho về dạng phương trình bậc nhất đã biết cách giải. Bằng việc hiểu và áp dụng những kiến thức này, học sinh sẽ có thêm sự hỗ trợ trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề các trường hợp đồng dạng của tam giác vuông
Tài liệu gồm 15 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề các trường hợp đồng dạng của tam giác vuông, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT 1. Áp dụng các trường hợp đồng dạng của tam giác vào tam giác vuông. Hai tam giác vuông đồng dạng với nhau nếu: + Tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia. + Tam giác vuông này có hai cạnh góc vuông tỉ lệ với hai cạnh góc vuông của tam giác vuông kia. 2. Dấu hiệu đặc biệt nhận biết hai tam giác vuông đồng dạng. Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng. 3. Tỉ số hai đường cao, trung tuyến, phân giác của hai tam giác đồng dạng. + Tỉ số hai đường cao tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng. + Tỉ số hai đường trung tuyến tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng. + Tỉ số hai đường phân giác tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng. 4. Tỉ số diện tích của hai tam giác đồng dạng. Tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Chứng minh hai tam giác vuông đồng dạng. Phương pháp giải: Có thể sử dụng một trong các cách sau: + Cách 1: Áp dụng trường hợp đồng dạng của hai tam giác thường vào tam giác vuông. + Cách 2: Sử dụng đặc biệt nhận biết hai tam giác vuông đồng dạng. Dạng 2 . Sử dụng trường hợp đồng dạng của tam giác vuông để giải toán. Phương pháp giải: Sử dụng các trường hợp đồng dạng của hai tam giác vuông (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau hoặc cặp cạnh tương ứng tỉ lệ, từ đo suy ra điều cần chứng minh. Dạng 3 . Tỉ số diện tích của hai tam giác. Phương pháp giải: Sử dụng định lý tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng.
Chuyên đề trường hợp đồng dạng thứ ba
Tài liệu gồm 15 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề trường hợp đồng dạng thứ ba, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh hai tam giác đồng dạng. Phương pháp giải: Chỉ ra hai cặp góc tương ứng bằng nhau trong hai tam giác để suy ra hai tam giác đồng dạng. Dạng 2. Sử dụng các trường hợp đồng dạng thứ ba để tính độ dài các cạnh, chứng minh hệ thức cạnh hoặc chứng minh các góc bằng nhau. Phương pháp giải: Sử dụng trường hợp đồng dạng thứ ba (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau hoặc cặp cạnh tương ứng tỉ lệ.
Chuyên đề trường hợp đồng dạng thứ hai
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề trường hợp đồng dạng thứ hai, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh hai tam giác đồng dạng. Phương pháp giải: + Bước 1: Xét hai tam giác, chọn ra hai góc bằng nhau và chứng minh (nếu cần). + Bước 2: Lập tỉ số các cạnh tạo nên mỗi góc đó, rồi chứng minh chúng bằng nhau. + Bước 3: Từ đó, chứng minh hai tam giác đồng dạng. Dạng 2. Sử dụng các trường hợp đồng dạng thứ hai để tính độ dài các cạnh hoặc chứng minh các góc bằng nhau. Phương pháp giải: Sử dụng trường hợp đồng dạng thứ hai (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau hoặc cặp cạnh tương ứng còn lại bằng nhau.
Chuyên đề trường hợp đồng dạng thứ nhất
Tài liệu gồm 09 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề trường hợp đồng dạng thứ nhất, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh hai tam giác đồng dạng. Phương pháp giải: Để chứng minh hai tam giác đồng dạng, ta lập tỉ số các cạnh tương ứng của hai tam giác và chứng minh chúng bằng nhau, từ đó ta được điều phải chứng minh. Dạng 2. Sử dụng trường hợp đồng dạng thứ nhất để tính độ dài các cạnh hoặc chứng minh các góc bằng nhau. Phương pháp giải: Sử dụng trường hợp đồng dạng thứ nhất (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau.