Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG cấp huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Lương Tài Bắc Ninh

Nội dung Đề thi HSG cấp huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Lương Tài Bắc Ninh Bản PDF - Nội dung bài viết Đề thi HSG cấp huyện Toán lớp 7 năm 2020 – 2021 phòng GD&ĐT Lương Tài – Bắc Ninh Đề thi HSG cấp huyện Toán lớp 7 năm 2020 – 2021 phòng GD&ĐT Lương Tài – Bắc Ninh Đề thi HSG cấp huyện Toán lớp 7 năm 2020 – 2021 do phòng Giáo dục và Đào tạo Lương Tài tổ chức gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài là 120 phút, kỳ thi sẽ diễn ra vào ngày 13 tháng 04 năm 2021. Đề thi này được thiết kế nhằm đánh giá năng lực và kiến thức của học sinh lớp 7 trong môn Toán. Với bốn dạng bài toán khác nhau, kỳ thi đề cao khả năng tư duy, logic và khéo léo trong giải quyết vấn đề. Học sinh sẽ được đánh giá dựa trên khả năng áp dụng kiến thức học tập vào thực tế và khả năng giải quyết vấn đề theo cách sáng tạo. Tham gia kỳ thi HSG cấp huyện Toán là một cơ hội để học sinh thể hiện khả năng của mình, học hỏi thêm kinh nghiệm từ việc giải quyết các bài toán phức tạp. Kỳ thi không chỉ là cơ hội để học sinh thách thức bản thân mình mà còn là dịp để họ trau dồi kiến thức và kỹ năng trong môn Toán. Chúng ta hy vọng rằng kỳ thi sẽ mang lại những trải nghiệm tích cực và ý nghĩa cho học sinh, giúp họ phát triển không chỉ về kiến thức mà còn về tư duy và kỹ năng giải quyết vấn đề.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát HSG Toán 7 năm 2017 - 2018 phòng GDĐT thành phố Kon Tum
Đề khảo sát HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT thành phố Kon Tum có đáp án + lời giải chi tiết + hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 03 tháng 04 năm 2017. Trích dẫn đề khảo sát HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT thành phố Kon Tum : + Cho tam giác ABC vuông tại A. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm BE và CD. Chứng minh rằng: a) BE = CD. b) BDE là tam giác cân. c) EIC 60 và IA là tia phân giác của DIE. + Tìm số hữu tỉ x, sao cho tổng của số đó với nghịch đảo của nó có giá trị là một số nguyên. + Cho các số a, b, c không âm thỏa mãn: a + 3c = 2016; a + 2b = 2017. Tìm giá trị lớn nhất của biểu thức P = a + b + c.
Đề giao lưu HSG Toán 7 năm 2017 - 2018 phòng GDĐT Vĩnh Bảo - Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT Vĩnh Bảo – Hải Phòng; đề thi có đáp án + lời giải chi tiết + bảng hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT Vĩnh Bảo – Hải Phòng : + Cho tam giác ABC cân tại A, BH vuông góc AC tại H. Trên cạnh BC lấy điểm M bất kì (M khác B và C). Gọi D, E, F là chân đường vuông góc hạ từ M đến AB, AC, BH. a) Chứng minh: ∆DBM = ∆FMB. b) Chứng minh khi M chạy trên cạnh BC thì tổng MD + ME có giá trị không đổi. c) Trên tia đối của tia CA lấy điểm K sao cho CK = EH. Chứng minh BC đi qua trung điểm của đoạn thẳng DK. + Cho tam giác ABC (AB < AC, B = 60). Hai tia phân giác AD (D BC) và CE (E AB) của ABC cắt nhau ở I. Chứng minh IDE cân. + Cho hai đa thức: f(x) và g(x). Xác định hệ số a;bcủa đa thức g(x) biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x).
Đề khảo sát HSG Toán 7 năm 2017 - 2018 trường THCS Vũ Phạm Khải - Ninh Bình
Đề khảo sát HSG Toán 7 năm 2017 – 2018 trường THCS Vũ Phạm Khải – Ninh Bình có đáp án và lời giải chi tiết, kỳ thi được diễn ra vào ngày 12 tháng 03 năm 2018. Trích dẫn đề khảo sát HSG Toán 7 năm 2017 – 2018 trường THCS Vũ Phạm Khải – Ninh Bình : + Nhà trường dự định chia vở viết cho 3 lớp 7A, 7B, 7C theo tỉ lệ số học sinh là 7:6:5. Nhưng sau đó vì có học sinh thuyển chuyển giữa 3 lớp nên phải chia lại theo tỉ lệ 6:5:4. Như vậy có lớp đã nhận được ít hơn theo dự định 12 quyển vở. Tính số vở mỗi lớp nhận được. + Gọi f là một hàm xác định trên tập hợp các số nguyên và thỏa mãn ba điều kiện sau: f(0) ≠0; f(1)=3; f(x)f(y)=f(x+y)+f(x-y) với mọi x, y. Tính giá trị của f(7). + Ba phân số có tổng bằng 213 70, các tử của chúng tỉ lệ với 3; 4; 5, các mẫu của chúng tỉ lệ với 5; 1; 2. Tìm ba phân số đó.
Đề giao lưu HSG Toán 7 năm 2017 - 2018 trường THCS Nguyễn Chích - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2017 – 2018 trường THCS Nguyễn Chích – Thanh Hóa; đề thi có đáp án + lời giải + thang điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2017 – 2018 trường THCS Nguyễn Chích – Thanh Hóa : + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE. b) Gọi I là một điểm trên AC; K là một điểm trên EB sao cho AI = EK. Chứng minh ba điểm I, M, K thẳng hàng. c) Từ E kẻ EH BC H BC. Biết HBE = 50o; MEB = 25o. Tính HEM và BME. + Tìm hai số nguyên dương x và y biết rằng tổng, hiệu và tích của chúng lần lượt tỉ lệ nghịch với 35; 210;12. + Tính giá trị biểu thức A.