Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Bình Định

Nội dung Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2023 - 2024 sở GD&ĐT Bình Định Đề tuyển sinh vào môn Toán năm 2023 - 2024 sở GD&ĐT Bình Định Chào quý thầy cô và các bạn học sinh, Sytu xin giới thiệu đến mọi người đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Bình Định. Kỳ thi sẽ diễn ra vào thứ Ba, ngày 06 tháng 06 năm 2023. Cụ thể, đây là một số câu hỏi trong đề thi: 1. Trong hệ toạ độ Oxy, cho các đường thẳng (d): y = ax - 4 và (d1): y = -3x + 2. a) Biết đường thẳng (d) đi qua điểm A(-1;5). Tìm giá trị của a. b) Tìm toạ độ giao điểm của đường thẳng (d1) với trục hoành, trục tung. Tính khoảng cách từ gốc tọa độ O đến đường thẳng (d1). 2. Trong kì thi tuyển sinh vào lớp 10 THPT, hai trường A và B có tổng số 380 thí sinh dự thi. Sau khi công bố kết quả, số thí sinh trúng tuyển của cả hai trường là 191 thí sinh. Trường A có tỉ lệ trúng tuyển là 55% tổng số thí sinh dự thi của trường A, trường B có tỉ lệ trúng tuyển là 45% tổng số thí sinh dự thi của trường B. Hỏi mỗi trường có bao nhiêu thí sinh dự thi? 3. Cho tam giác nhọn ABC nội tiếp đường tròn (O) có AB < AC, các đường cao BE, CF của tam giác ABC cắt nhau tại H, đường thẳng EF cắt đường thẳng BC tại K. a) Chứng minh tứ giác BCEF nội tiếp. b) Chứng minh hai tam giác KBF và KEC đồng dạng, từ đó suy ra KB.KC = KF.KE. c) Đường thẳng AK cắt lại đường tròn (O) tại G khác A, chứng minh các điểm A, G, F, E, H cùng thuộc một đường tròn. Hy vọng rằng đề thi này sẽ giúp các bạn học sinh chuẩn bị tốt cho kỳ thi tuyển sinh. Chúc quý thầy cô và các em đạt kết quả cao!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Đắk Lắk
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh vào lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT Đắk Lắk; đề thi có đáp án và lời giải chi tiết (lời giải được trình bày bởi thầy giáo Nguyễn Dương Hải – giáo viên Toán trường THCS Nguyễn Chí Thanh, Buôn Ma Thuộc, Đắk Lắk). Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Đắk Lắk : + Trên nửa đường tròn O đường kính AB với AB 2022, lấy điểm C (C khác A và B), từ C kẻ CH vuông góc với AB (H AB). Gọi D là điểm bất kì trên đoạn CH (D khác C và H), đường thẳng AD cắt nửa đường tròn tại điểm thứ hai là E. 1) Chứng minh tứ giác BHDE là tứ giác nội tiếp. 2) Chứng minh AD EC CD AC. 3) Chứng minh 2 AD AE BH BA 2022. 4) Khi điểm C di động trên nửa đường tròn (C khác A, B và điểm chính giữa cung AB), xác định vị trí điểm C sao cho chu vi tam giác COH đạt giá trị lớn nhất. + Trong mặt phẳng tọa độ Oxy, viết phương trình đường thẳng đi qua điểm A 1 2 và song song với đường thẳng y x 2 1. + Trong mặt phẳng tọa độ Oxy cho Parabol 2 P y x và đường thẳng d y m x m 2 1 3. Gọi 1 2 x x là hoành độ giao điểm của đường thẳng d và Parabol P. Tìm giá trị nhỏ nhất của 2 2 M x x 1 2.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Tây Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Tây Ninh; kỳ thi được diễn ra vào thứ Ba ngày 08 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Tây Ninh : + Cho tứ giác ABCD (ABC, BCD là các tam giác nhọn) nội tiếp đường tròn có AC và BD cắt nhau tại E. Gọi M N và I lần lượt là trung điểm của CD, CE và DE. a) Chứng minh IAE = EBN. b) Gọi J là giao điểm của A và BN; đường thẳng JM cắt AC và BD lần lượt tại K và L. Chứng minh JE là tiếp tuyến của đường tròn ngoại tiếp tam giác EKL. + Cho tứ giác ABCD có ABD = 29°; ADB = 41°; DC = 58 và ACB = 82°. Tính ABC. + Cho x, y, z là các số thực thỏa mãn 0 < x, y, z < 1. Tìm giá trị lớn nhất của biểu thức T = 2(x3 + y3 + z3) – (x2y + y2z + z2x).
Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2021 - 2022 sở GDĐT Tây Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2021 – 2022 sở GD&ĐT Tây Ninh; kỳ thi được diễn ra vào thứ Hai ngày 07 tháng 06 năm 2021; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2021 – 2022 sở GD&ĐT Tây Ninh : + Một đoàn khách du lịch gồm 40 người dự định tham quan đỉnh núi Bà Đen, nóc nhà Đông Nam Bộ bằng cáp treo khứ hồi (gồm lượt lên và lượt xuống). Nhưng khi tới nơi có 5 bạn trẻ muốn khám phá bằng đường bộ khi leo lên còn lúc xuống sẽ đi cáp treo để trải nghiệm nên 5 bạn chỉ mua vé lượt xuống, do đó đoàn đã chi ra 9.450.000 đồng để mua vé. Hỏi giá cáp treo khứ hồi và giá vé 1 lượt là bao nhiêu? Biết rằng giá vé 1 lượt rẻ hơn giá vé khứ hồi là 110.000 đồng. + Cho ∆ABC vuông tại A ngọi tiếp đường tròn (O). Gọi D E F lần lượt là các tiếp điểm của O với các cạnh AB AC và BC. Đường thẳng BO cắt đường thẳng EF tại I. Tính BIF. + Cho hình chữ nhật ABCD. Gọi M N lần lượt là trung điểm của các cạnh BC và CD. Gọi E là giao điểm của BN với AM và F là giao điểm của BN với DM; DM cắt AN tại K. Chứng minh điểm A nằm trên đường tròn ngoại tiếp tam giác EFK.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 - 2022 trường chuyên Quốc học Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào 05 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 trường chuyên Quốc học Huế : + Trên mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = 2mx + 3 (m khác 0). Tìm tất cả các giá trị của m để đường thẳng (d) cắt (P) tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng 6 cm2 (với O là gốc tọa độ, đơn vị đo trên các trục tọa độ là xentimét). + Cho đường tròn (O) và dây BC cố định (BC không phải là đường kính). Điểm A di động trên cung lớn BC sao cho tam giác ABC là tam giác nhọn. Gọi E là điểm đối xứng của B qua đường thẳng AC và F là điểm đối xứng của C qua đường thẳng AB. Gọi K là giao điểm của hai đường thẳng EC và FB, H là giao điểm của hai đường thẳng BE và CF. a) Chứng minh FAHB và ACKF là các tứ giác nội tiếp. b) Chứng minh KA là phân giác của góc BKC và ba điểm K, O, A thẳng hàng. c) Xác định vị trí của điểm A sao cho tứ giác BKCO có diện tích lớn nhất. + Tìm tất cả các giá trị nguyên dương của x và y thoả mãn x2 – 2^y.x – 4^21.9 = 0.