Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 9 môn Toán vòng 3 năm 2023 2024 trường THCS Tân Thành Nghệ An

Nội dung Đề thi HSG lớp 9 môn Toán vòng 3 năm 2023 2024 trường THCS Tân Thành Nghệ An Bản PDF - Nội dung bài viết Đề thi HSG lớp 9 môn Toán vòng 3 năm 2023-2024 trường THCS Tân Thành Nghệ An Đề thi HSG lớp 9 môn Toán vòng 3 năm 2023-2024 trường THCS Tân Thành Nghệ An Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi chọn học sinh giỏi cấp trường môn Toán lớp 9 vòng 3 năm học 2023-2024 của trường THCS Tân Thành, tỉnh Nghệ An. Đề thi này bao gồm các câu hỏi thú vị và thách thức, kèm theo đáp án và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi đáng chú ý trong đề thi: Cho tam giác ABC có ba góc nhọn, ba đường cao AK, BD, CE cắt nhau tại H. Hãy chứng minh: BH.BD = BC.BK và BH.BD + CH.CE = BC2. Hãy chứng minh rằng BH = AC.cotABC trong tam giác ABC. Gọi M là trung điểm của BC. Đường thẳng qua A vuông góc với AM cắt đường thẳng BD, CE lần lượt tại Q và P. Chứng minh rằng MP/MQ. Trong một buổi gặp mặt có 294 người tham gia, những người quen nhau bắt tay nhau. Biết nếu A bắt tay B thì một trong hai người A và B bắt tay không quá 6 lần. Hỏi có nhiều nhất bao nhiêu lượt bắt tay diễn ra? Chứng minh rằng A = n(n + 1)(n + 2)(n + 3) không là số chính phương với mọi số tự nhiên n khác 0. Đề thi Toán HSG lớp 9 vòng 3 năm 2023-2024 của trường THCS Tân Thành Nghệ An là cơ hội để các em thử thách bản thân, rèn luyện tư duy logic và khả năng giải quyet vấn đề. Chúc các em học sinh thành công và tự tin trước mỗi câu hỏi!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 9 năm 2023 - 2024 trường THCS Nguyễn Đình Xô - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 trường THCS Nguyễn Đình Xô, tỉnh Bắc Ninh. Trích dẫn Đề thi HSG Toán 9 năm 2023 – 2024 trường THCS Nguyễn Đình Xô – Bắc Ninh : + Cho hàm số y m x m 2 1. a) Tìm điều kiện của m để hàm số nghịch biến trên tập số thực. b) Tìm m để đồ thị của các hàm số y x y x 2 2 1 và y m x m 2 1 đồng quy. c) Tìm m để đồ thị hàm số tạo với trục tung và trục hoành một tam giác có diện tích bằng 2. + Cho phương trình 2 x mx m 2 4 0 a) Giải phương trình với m = 1 b) Tìm m để phương trình có hai nghiệm phân biệt 1 2 x x thỏa mãn 3 3 1 2 x x m 26. + Cho tam giác ABC vuông tại A, đường cao AH a) Biết AB = 15cm, HC = 16cm. Tính AC, BC, AH và BAH. b) Trên Ax là tia đối tia AB lấy điểm K bất kì, kẻ AI vuông góc CK. Chứng minh tích CI.CK không đổi khi K thay đổi trên Ax. c) Tính giá trị biểu thức (𝑐𝑜𝑡𝐶𝐾𝐴.𝑡𝑎𝑛𝐶𝐻𝐼)^ 2023.
Đề thi HSG huyện Toán 9 năm 2023 - 2024 phòng GDĐT Nam Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nam Đàn, tỉnh Nghệ An; kỳ thi được diễn ra vào sáng thứ Năm ngày 26 tháng 10 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi HSG huyện Toán 9 năm 2023 – 2024 phòng GD&ĐT Nam Đàn – Nghệ An : + Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh AM.AB = AN.AC. b) Biết AH = h;  = a. Tính độ dài MN theo h và a. c) Trong trường hợp  = 900, chứng minh HM.HN/HB.HC = MN/BC. + Cho 2023 số tự nhiên bất kỳ. Chứng minh rằng trong số các số đó có một số chia hết cho 2023 hoặc có một số số mà tổng của các số ấy chia hết cho 2023. + Cho 2 số tự nhiên y > x thỏa mãn (2y − 1)2 = (2y − x)(6y + x). Chứng minh 2y – x là số chính phương.
Đề thi HSG Toán 9 vòng 1 năm 2023 - 2024 trường THPT chuyên Hà Nội - Amsterdam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển học sinh giỏi môn Toán 9 vòng 1 năm học 2023 – 2024 trường THPT chuyên Hà Nội – Amsterdam; kỳ thi được diễn ra vào thứ Năm ngày 14 tháng 09 năm 2023. Trích dẫn Đề thi HSG Toán 9 vòng 1 năm 2023 – 2024 trường THPT chuyên Hà Nội – Amsterdam : + Với các số nguyên dương a, b, c, d thỏa mãn a + b + c + d = 2024, tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = ab + bc + cd. + Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh AB, AC lần lượt lấy các điểm M, N và trên cạnh BC lấy các điểm P, Q sao cho tứ giác MNPQ là hình vuông. Gọi E là giao điểm của CM với PN, F là giao điểm của BN với MQ. 1) Chứng minh rằng đường thẳng PF song song với đường thẳng CM. 2) Lấy điểm G trên đoạn thẳng MN sao cho GM = QF. Chứng minh: Tam giác GEF cân và đường thẳng AG vuông góc với đường thẳng EF. 3) Đường thẳng qua Q song song với GE cắt đường thẳng qua P song song với GF tại S, các đường thẳng SM, SN cắt BC lần lượt tại K, L. Chứng minh: KL2 = QK.PL. + Một tập con A của tập hợp các số nguyên dương được gọi là tập tốt nếu thỏa mãn đồng thời các điều kiện sau: i) Tập A chứa ít nhất 2 phần tử. ii) Phần tử lớn nhất của tập A là 2023. iii) Với mọi cặp phần tử a, b thuộc A mà a > b, ta luôn có (a – b)/(a;b) thuộc A, trong đó (a;b) là ước chung lớn nhất của a và b. 1) Chỉ ra một tập tốt có nhiều phần tử nhất. 2) Xác định tất cả các tập tốt.
Đề thi chọn học sinh giỏi Toán THCS năm 2022 - 2023 sở GDĐT Vĩnh Long
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Long; kỳ thi được diễn ra vào ngày 19 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn học sinh giỏi Toán THCS năm 2022 – 2023 sở GD&ĐT Vĩnh Long : + Cho đường tròn O R có đường kính AB. Điểm C là điểm bất kỳ trên O (C AC B). Tiếp tuyến tại C cắt tiếp tuyến tại A và B lần lượt tại P và Q a) Chứng minh 0 POQ 90 và 2 AP BQ R. b) OP cắt AC tại M OQ cắt BC tại N. Gọi H I lần lượt là trung điểm của MN và PQ. Đường trung trực của MN và đường trung trực của PQ cắt nhau tại K. Chứng minh AB IK 4. c) Chứng minh NMQ NPQ. + Cho hình vuông ABCD có độ dài đường chéo bằng 1. Tứ giác MNPQ có các đỉnh nằm trên các cạch của hình vuông. Chứng minh rằng chu vi tứ giác MNPQ không nhỏ hơn 2. + Cho phương trình: 2 x mx m 2 2 1 0 (m là tham số). Tìm m để phương trình có hai nghiệm 1 2 x x thỏa 1 2 2 2 1 2 1 2 x x T đạt giá trị nhỏ nhất.