Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường chuyên Hạ Long Quảng Ninh

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường chuyên Hạ Long Quảng Ninh Bản PDF Ngày … tháng 12 năm 2019, trường THPT chuyên Hạ Long, tỉnh Quảng Ninh tổ chức kì thi kiểm tra chất lượng môn Toán khối 11 giai đoạn cuối học kì 1 năm học 2019 – 2020. Đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT chuyên Hạ Long – Quảng Ninh có mã đề 101, đề gồm 05 trang, có 45 câu trắc nghiệm dành cho cho tất cả các thí sinh, 05 câu dành cho học sinh các lớp không phải chuyên Toán và 05 câu cho các thí sinh các lớp chuyên Toán, thời gian học sinh làm bài là 90 phút. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường chuyên Hạ Long – Quảng Ninh : + Mệnh đề nào sau đây sai? A. Phép tịnh tiến bảo toàn khoảng cách giữa hai điểm bất kì. B. Phép tịnh tiến biến đường thẳng thành đường thẳng song song với đường thẳng đã cho. C. Phép tịnh tiến biến ba điểm thẳng hàng thành ba điểm thẳng hàng. D. Phép tịnh tiến biến tam giác thành tam giác bằng tam giác đã cho. + Một hình (H) có tâm đối xứng nếu và chỉ nếu: A. Tồn tại phép đối xứng tâm biến hình (H) thành chính nó. B. Tồn tại phép đối xứng trục biến hình (H) thành chính nó. C. Hình (H) là hình bình hành. D. Tồn tại phép dời hình biến hình (H) thành chính nó. [ads] + Cho hình chóp S.ABCD có đáy là hình thang ABCD với AB // CD. Khẳng định nào sau đây sai? A. Hình chóp S.ABCD có bốn mặt bên. B. Giao tuyến của hai mặt phẳng (SAC) và (SBD) là SO (O là giao điểm của AC và BD). C. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là SI (với I là giao điểm của AD và BC). D. Giao tuyến của hai mặt phẳng (SAB) và (SAD) là đường trung bình của ABCD. + Cho tứ diện ABCD. Gọi O là một điểm bên trong tam giác BCD và M là một điểm trên đoạn AO. Gọi I, J là hai điểm trên cạnh BC, BD. Giả sử IJ cắt CD tại K, BO cắt IJ tại E và BO cắt CD tại H, ME cắt AH tại F. Giao tuyến của hai mặt phẳng (MIJ) và (ACD) là đường thẳng? + Trong một lớp có 20 học sinh nữ và 15 học sinh nam. Giáo viên chủ nhiệm cần chọn hai học sinh trong đó có một nam và một nữ đi dự Đại hội Đoàn trường THPT chuyên Hạ Long (Quảng Ninh). Hỏi giáo viên có bao nhiêu cách chọn?

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 11 chuyên năm 2020 - 2021 trường chuyên Lê Hồng Phong - Nam Định
Đề thi HK1 Toán 11 chuyên năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn đề thi HK1 Toán 11 chuyên năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định : + Cho tam giác ABC nhọn, nội tiếp đường tròn (O), có đường cao AD (D thuộc BC). Kẻ DE, DF lần lượt vuông góc với AB, AC (E thuộc AB, F thuộc AC). Gọi I là giao điểm của BF và CE. a) Gọi K là giao điểm của BF và DE, L là giao điểm của CE và DF. Chứng minh rằng KL song song với BC. b) Gọi M, N lần lượt là trung điểm của AD và AI. Chứng minh rằng M, N, O thẳng hàng. + Cho số nguyên dương n. Có bao nhiêu số tự nhiên chia hết cho 3, có n chữ số và các chữ số đều thuộc {1;2;3;6}. + Tìm tất cả các hàm số f: R → R thỏa mãn: f(x)f(y) – f(x + y) = 4/9.xy với mọi x, y thuộc R.
Đề thi học kì 1 Toán 11 năm 2020 - 2021 trường THPT chuyên Hà Nội - Amsterdam
Đề thi học kì 1 Toán 11 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 20 câu, chiếm 60% số điểm, phần tự luận gồm 03 câu, chiếm 40% số điểm, thời gian làm bài 90 phút. Trích dẫn đề thi học kì 1 Toán 11 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi điểm I và điểm M lần lượt là trung điểm của các đoạn thẳng SA và OC. 1 Xác định giao tuyến của hai mặt phẳng (SAC) và (SBD). 2 Gọi (α) là mặt phẳng chứa đường thẳng IM và song song với đường thẳng BD. Xác định thiết diện của mặt phẳng (α) với hình chóp S.ABCD. 3 Giả sử mặt phẳng (α) cắt đường thẳng SO tại điểm K. Tính tỉ số SK/KO. + Từ 30 câu hỏi trắc nghiệm gồm 15 câu dễ, 9 câu trung bình và 6 câu khó người ta chọn ra 10 câu để làm đề kiểm tra sao cho phải có đủ cả 3 loại dễ, trung bình và khó. Hỏi có thể lập được bao nhiêu đề kiểm tra. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, Q lần lượt là trung điểm của các cạnh AB, AD, SC. Thiết diện của hình chóp với mặt phẳng (MNQ) là đa giác có bao nhiêu cạnh?
Đề thi HK1 Toán 11 năm 2020 - 2021 trường THPT Nguyễn Thị Minh Khai - TP HCM
Đề thi HK1 Toán 11 năm 2020 – 2021 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có đáp số và lời giải chi tiết. Trích dẫn đề thi HK1 Toán 11 năm 2020 – 2021 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Cho tập hợp A = {1; 2; 3; 4; 5; 6}. Gọi B là tập hợp tất cả các số tự nhiên gồm 4 chữ số đôi một khác nhau được lấy từ A. a) Tính số phần tử của B. b) Chọn ngẫu nhiên 2 số thuộc B. Tính xác suất để trong hai số được chọn có đúng 1 số có mặt chữ số 3. + Dùng phương pháp qui nạp toán học, chứng minh rằng với mọi số nguyên dương n ta luôn có 13^n – 1 chia hết cho 12. + Tìm hệ số của x^20 trong khai triển Newton của (2x^5 – 4)^n biết n là số tự nhiên thỏa 2.2An + 50 = 2A2n.
Đề thi học kỳ 1 Toán 11 năm 2020 - 2021 trường chuyên Lê Hồng Phong - TP HCM
Thứ Tư ngày 16 tháng 12 năm 2020, trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng cuối học kỳ 1 môn Toán lớp 11 năm học 2020 – 2021. Đề thi học kỳ 1 Toán 11 năm 2020 – 2021 trường chuyên Lê Hồng Phong – TP HCM gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán 11 năm 2020 – 2021 trường chuyên Lê Hồng Phong – TP HCM : + Một số nguyên dương gọi là đối xứng nếu ta viết các chữ số theo thứ tự ngược lại thì được số bằng số ban đầu, ví dụ số 1221 là một số đối xứng. Chọn ngẫu nhiên một số đối xứng có 4 chữ số, tính xác suất chọn được số chia hết cho 7. + Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là các điểm trên cạnh CD, AD, SA thỏa MD = 2MC, NA = 3ND, PA = 3PS. Gọi G là trọng tâm tam giác SBC. a) Tìm giao điểm K của đường thẳng BM và mặt phẳng (SAC). b) Chứng minh mặt phẳng (NPK) song song mặt phẳng (SCD). c) Chứng minh đường thẳng MG song song mặt phẳng (SAD). + Gieo một con súc sắc cân đối và đồng chất hai lần. Tính xác suất để số chấm xuất hiện trong hai lần gieo khác nhau.