Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT An Nghĩa TP HCM

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT An Nghĩa TP HCM Bản PDF Kỳ thi cuối học kì 1 môn Toán lớp 11 là kỳ thi rất quan trọng đối với các em học sinh lớp 11, điểm số của kỳ thi này tác động lớn đến điểm trung bình môn Toán lớp 11 nói riêng và xếp loại học lực nói chung. Để giúp các em đạt được điểm số cao trong kì thi HK1 Toán lớp 11 sắp tới, Sytu chọn lọc và chia sẻ đến các em bản PDF đề thi + đáp án/đáp số + lời giải chi tiết đề thi học kì 1 Toán lớp 11 năm học 2019 – 2020 trường THPT An Nghĩa, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán lớp 11 năm 2019 – 2020 trường THPT An Nghĩa – TP HCM : + Từ một hộp chứa 6 quả cầu trắng và 4 quả cầu đen, lấy ngẫu nhiên đồng thời 4 quả. Tính xác suất sao cho: a) Bốn quả lấy ra cùng màu. b) Có ít nhất một quả màu trắng. + Cho cấp số cộng (un) biết u4 = 10; u7 = 19. a) Tìm số hạng đầu và công sai của cấp số cộng. b) Tính tổng của 50 số hạng đầu. + Cho hình chóp S.ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD. Tìm giao điểm của SC và mặt phẳng (ABM).

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 lớp 11 ban cơ bản trường Chu Văn An - Hà Nội 2014 - 2015
Đề thi HK1 lớp 11 ban cơ bản trường Chu Văn An – Hà Nội năm học 2014 – 2015 gồm 5 bài toán, có đáp án và thang điểm Trích một số bài toán trong đề: + Từ các chữ số thuộc tập hợp A = {0,1,2,3,4,5}, có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau trong đó nhất thiết phải có mặt chữ số 1 và chữ số 2? + Gieo một con súc sắc 3 lần liên tiếp. Tính xác suất để trong 3 lần gieo có ít nhất 2 lần mặt xuất hiện là 6 chấm. + Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(1; -1) và đường thẳng d: 2x – 3y – 2 = 0. Viết phương trình đường thẳng d ‘ là ảnh của đường thẳng d qua phép đối xứng tâm A. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh SA, CD. 1. Tìm giao tuyến của hai mặt phẳng (EFD) và (SAB). 2. Xác định giao điểm của đường thẳng EF với mặt phẳng (SBD).
Đề thi HK1 lớp 11 ban nâng cao trường Chu Văn An - Hà Nội 2013 - 2014
Đề thi HK1 lớp 11 ban nâng cao trường Chu Văn An – Hà Nội năm học 2013 – 2014 gồm 6 bài toán, có lời giải chi tiết và thang điểm. Trích một số bài toán trong đề thi: + Có 4 đồ vật đôi một khác nhau được chia hết cho ba người. Hỏi có bao nhiêu cách chia để mỗi người có ít nhất một đồ vật. + Gieo một con súc sắc (được chế tạo cân đối, đồng chất) hai lần liên tiếp. Tính xác suất để tổng số chấm trên mặt xuất hiện của con súc sắc trong hai lần gieo là một số lẻ. + Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. M và N lần lượt là trung điểm các cạnh SA, CD. 1. Chứng minh MN song song với mặt phẳng (SBC). 2. (a) là mặt phẳng qua M, song song với AN và SC. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (a). 3. Mặt phẳng (a) cắt đường thẳng SB tại I. Tính tỉ số IS/IB
Đề thi HK1 lớp 11 ban cơ bản trường Chu Văn An - Hà Nội 2013 - 2014
Đề thi HK1 lớp 11 ban cơ bản trường Chu Văn An – Hà Nội năm học 2013 – 2014 gồm 3 bài toán, có lời giải chi tiết và thang điểm. Trích một số bài toán trong đề: + Một đội văn nghệ của trường có 8 tiết mục múa hát và 4 tiết mục kịch. Hỏi có bao nhiêu cách chọn 5 tiết mục đi dự thi trong đó có ít nhất 2 tiết mục kịch. + Có hai hộp cầu, mỗi hộp chứa 15 quả cầu được đánh số từ 1 đến 15. Lấy ngẫu nhiên từ mỗi hộp một quả cầu. Tính xác suất để tích số trên hai quả cầu thỏa mãn: a. là một số lẻ. b. là một số chia hết cho 6. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trọng tâm của tam giác SAB và SAD. 1. Chứng minh rằng MN song song với mặt phẳng (ABCD). 2. P là trung điểm của BC. Xác định thiết diện của hình chóp bị cắt bởi mặt phẳng (MNP). 3. Gọi Q là giao điểm của SB và mặt phẳng (MNP). Tính tỉ số SQ/SB
Đề thi HK1 lớp 11 trường THPT Thị Xã Quảng Trị 2014 - 2015
Đề thi HK1 lớp 11 trường THPT Thị Xã Quảng Trị năm học 2014 – 2015 gồm 5 bài toán. Trích một số bài toán trong đề thi: + Gieo đồng thời hai con súc sắc cân đối. Tính xác suất sao cho: 1/ Hai con súc sắc đều xuất hiện mặt chẵn. 2/ Tổng số chấm xuất hiện trên hai con súc sắc bằng 7. + Cho hình chóp S.ABCD, đáy là hình hành ABCD có tâm O. Gọi M là trung điểm của SC. 1/ Xác định giao tuyến của mp(SAC) và mp(SBD), mp(SAB) và mp(SCD). 2/ Gọi N là trung điểm của OB, hãy xác định giao điểm I của mp(AMN) với SD. Xác định thiết diện khi cắt hình chóp S.ABCD bởi mặt phẳng (AMN). + Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên gồm sáu chữ số khác nhau từng đôi một và trong mỗi số đó tổng của ba chữ số đầu nhỏ hơn tổng của ba chữ số cuối một đơn vị.