Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 Toán 10 năm 2023 - 2024 trường THPT Thuận Thành 1 - Bắc Ninh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng lần 1 môn Toán 10 năm học 2023 – 2024 trường THPT Thuận Thành số 1, tỉnh Bắc Ninh; đề thi có đáp án trắc nghiệm mã đề 111 – 112 – 113 – 114 – 115 – 116 – 117 – 118. Trích dẫn Đề khảo sát lần 1 Toán 10 năm 2023 – 2024 trường THPT Thuận Thành 1 – Bắc Ninh : + Một doanh nghiệp tư nhân A chuyên kinh doanh xe máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe Hon đa Lead 2024 Smartkey bản đen mờ với chi phí mua vào một chiếc là 37 triệu đồng và bán ra là 41 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một tháng là 60 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một tháng sẽ tăng thêm 20 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất. + Trong đợt hội trại “Khi tôi 18” được tổ chức tại trường THPT X, Đoàn trường có thực hiện một dự án ảnh trưng bày trên 1 pano có dạng parabol như hình vẽ. Biết rằng Đoàn trường sẽ yêu cầu các lớp gửi hình dự thi và dán lên khu vực hình chữ nhật ABCD có kích thước AB = 2m, AD = 3m, phần còn lại sẽ được trang trí hoa văn cho phù hợp và pano được đặt sao cho cạnh CD tiếp xúc với mặt đất. Hỏi vị trí cao nhất của pano so với mặt đất là bao nhiêu? + Trong một cuộc thi gói bánh vào dịp năm mới, mỗi đội chơi được sử dụng tối đa 20 kg gạo nếp, 2 kg thịt ba chỉ, 5 kg đậu xanh để gói bánh chưng và bánh ống. Để gói một cái bánh chưng cần 0,4 kg gạo nếp, 0,05 kg thịt và 0,1 kg đậu xanh; để gói một cái bánh ống cần 0,6 kg gạo nếp, 0,075 kg thịt và 0,15 kg đậu xanh. Mỗi cái bánh chưng nhận được 5 điểm thưởng, mỗi cái bánh ống nhận được 7 điểm thưởng. Hỏi điểm thưởng cao nhất có thể đạt được là bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề thi KSCL lớp 10 môn Toán lần 3 năm 2018 2019 trường Yên Lạc 2 Vĩnh Phúc
Nội dung Đề thi KSCL lớp 10 môn Toán lần 3 năm 2018 2019 trường Yên Lạc 2 Vĩnh Phúc Bản PDF Nhằm mục đích kiểm tra đánh giá chất lượng học tập môn Toán của học sinh khối lớp 10 trong giai đoạn học kỳ 2 năm học 2018 – 2019, trường THPT Yên Lạc 2, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng Toán lớp 10 năm học 2018 – 2019 lần thứ 3. Đề thi KSCL Toán lớp 10 lần 3 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc có mã đề 132, đề gồm 50 câu hỏi và bài toán dạng trắc nghiệm – đúng theo xu hướng thi toán trắc nghiệm hiện hành, đề thi gồm 6 trang, thời gian học sinh làm bài là 90 phút, đề thi có đáp án. Trích dẫn đề thi KSCL Toán lớp 10 lần 3 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc : + Trong một cuộc thi pha chế, hai đội chơi A, B được sử dụng tối đa 24g hương liệu, 9 lít nước và 210g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30g đường, 1 lít nước và 1g hương liệu; pha chế 1 lít nước táo cần 10g đường, 1 lít nước và 4g hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng, mỗi lít nước táo nhận được 80 điểm thưởng. Đội A pha chế được a lít nước cam và b lít nước táo và dành được điểm thưởng cao nhất. Hiệu số a – b là? [ads] + Trong mặt phẳng Oxy, cho tam giác ABC có trung điểm của BC là M(2; 2), đường cao kẻ từ B đi qua điểm N(-2;-4), đường thẳng AC đi qua K(0;2) và điểm E(3;-3) là điểm đối xứng của A qua tâm đường tròn ngoại tiếp tam giác ABC. Biết C(a;b) với b < 0. Khi đó ab bằng? + Người ta dùng 120m2 rào để rào một mảnh vườn hình chữ nhật để thả gia súc. Biết một cạnh của hình chữ nhật là bức tường (không phải rào). Tính diện tích lớn nhất của mảnh để có thể rào được? File WORD (dành cho quý thầy, cô):
Đề thi KSCL lớp 10 môn Toán lần 2 năm 2018 2019 trường Lý Thái Tổ Bắc Ninh
Nội dung Đề thi KSCL lớp 10 môn Toán lần 2 năm 2018 2019 trường Lý Thái Tổ Bắc Ninh Bản PDF Ngày 18 tháng 05 năm 2019, trường THPT Lý Thái Tổ, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 10 năm học 2018 – 2019 lần thứ 2. Đề thi KSCL Toán lớp 10 lần 2 năm 2018 – 2019 trường Lý Thái Tổ – Bắc Ninh được biên soạn theo dạng đề tự luận, đề gồm 1 trang với 6 bài toán, học sinh làm bài trong khoảng thời gian 120 phút, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi KSCL Toán lớp 10 lần 2 năm 2018 – 2019 trường Lý Thái Tổ – Bắc Ninh : + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(4;-3), B(2;5), C(5;4). 1) Viết phương trình tổng quát của đường thẳng BC. Tính diện tích tam giác ABC. 2) Viết phương trình đường tròn (T) ngoại tiếp tam giác ABC. 3) Tìm điểm M thuộc đường tròn (T) sao cho ME + 2MF đạt giá trị nhỏ nhất, với E(7;9), F(0;8). [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E) có tâm sai bằng √3/2, chu vi hình chữ nhật cơ sở bằng 12. Viết phương trình chính tắc của (E). Biết M là điểm di động trên (E), tính giá trị của biểu thức P = MF1^2 + MF2^2 – 5OM^2 – 3MF1MF2. + Cho tam giác nhọn ABC với H, E, K lần lượt là chân đường cao kẻ từ các đỉnh A, B, C. Gọi diện tích các tam giác ABC và HEK lần lượt là SABC và SHEK. Biết rằng SABC = 4SHEK, chứng minh tam giác ABC đều. File WORD (dành cho quý thầy, cô):
Đề thi khảo sát lần 3 lớp 10 môn Toán năm 2018 2019 trường Nguyễn Đăng Đạo Bắc Ninh
Nội dung Đề thi khảo sát lần 3 lớp 10 môn Toán năm 2018 2019 trường Nguyễn Đăng Đạo Bắc Ninh Bản PDF Đề thi khảo sát lần 3 Toán lớp 10 năm 2018 – 2019 trường Nguyễn Đăng Đạo – Bắc Ninh có mã đề 110 gồm 04 trang, đề được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019. Trích dẫn đề thi khảo sát lần 3 Toán lớp 10 năm 2018 – 2019 trường Nguyễn Đăng Đạo – Bắc Ninh : + Trong mặt phẳng Oxy, cho hình chữ nhật ABCD với AD = 2AB. Gọi M, N lần lượt là trung điểm của AD, BC. Điểm K(5;-1) đối xứng với M qua N. Phương trình đường thẳng chứa cạnh AC là: 2x + y – 3 = 0. Biết A(a;b) (b > 0). Tính tổng a + b. [ads] + Cho hai hàm số f(x) = |x + 2| – |x – 2|, g(x) = -|x|. Khẳng định nào sau đây đúng? A. f(x) là hàm số chẵn, g(x) là hàm số lẻ. B. f(x) là hàm số lẻ, g(x) là hàm số chẵn. C. f(x) là hàm số lẻ, g(x) là hàm số lẻ. D. f(x) là hàm số chẵn, g(x) là hàm số chẵn. + Cho hàm số f(x) = x^2 – 2(m + 1/m)x + m. Đặt a, b lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của f(x) trên đoạn [-1;1]. Gọi S là tập hợp tất cả các giá trị của tham số m sao cho: b – a = 8. Tính tổng của các phần tử thuộc S. File WORD (dành cho quý thầy, cô):