Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra Toán 9 năm 2020 - 2021 trường THCS Tam Khương - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra Toán 9 năm học 2020 – 2021 trường THCS Tam Khương – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Bảy ngày 05 tháng 06 năm 2021. Trích dẫn đề kiểm tra Toán 9 năm 2020 – 2021 trường THCS Tam Khương – Hà Nội : + Một hộp sữa hình trụ có đường kính đáy là 12 cm, chiều cao là 10 cm. Người ta dùng giấy làm tem mác dán xung quanh vỏ hộp sữa. Tính diện tích giấy làm tem mác cần dùng để làm 1 lốc sữa (6 hộp) như vậy (không tính phần mép nối, lấy pi = 3,14). + Cho hàm số y m x m 4 4 (m là tham số). a) Tìm m để hàm số đã cho là hàm số bậc nhất đồng biến trên R. b) Chứng minh rằng với mọi giá trị của m thì đồ thị hàm số đã cho luôn cắt parabol 2 P y x tại hai điểm phân biệt. Gọi 1 2 x x là hoành độ các giao điểm, tìm m sao cho x x x x 1 1 2 2 1 1 18. + Cho đường tròn tâm O đường kính AB. Kẻ dây cung CD vuông góc với AB tại H (H nằm giữa A và O, H khác A và O). Lấy điểm G thuộc CH (G khác C và H), tia AG cắt đường tròn tại E khác A. a) Chứng minh tứ giác BEGH là tứ giác nội tiếp. b) Gọi K là giao điểm của hai đường thẳng BE và CD. Chứng minh: KC.KD = KE.KB. c) Đoạn thẳng AK cắt đường tròn tại F khác A. Chứng minh G là tâm đường tròn nội tiếp HEF.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra chất lượng Toán 9 tháng 9 năm 2022 trường THCS Cầu Diễn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng môn Toán 9 tháng 9 năm học 2022 – 2023 trường THCS Cầu Diễn, quận Nam Từ Liêm, thành phố Hà Nội. Trích dẫn Đề kiểm tra chất lượng Toán 9 tháng 9 năm 2022 trường THCS Cầu Diễn – Hà Nội : + Giải bài toán bằng cách lập phương trình: Một tổ sản xuất theo kế hoạch mỗi ngày phải làm được 18 sản phẩm. Nhưng thực tế do cải tiến kĩ thuật, mỗi ngày tổ đã làm được thêm 4 sản phẩm nên đã hoàn thành công việc trước 3 ngày và còn vượt mức 14 sản phẩm. Tính số sản phẩm tổ đó phải làm theo kế hoạch. + Cho tam giác MNP vuông tại M có đường cao MH; HN = 9cm; HP = 16cm. a) Tính: MN; MP; MH? b) Gọi I, K lần lượt là hình chiếu vuông góc của H lên MN, MP. Tính IK? c) Tính diện tích tứ giác NIKP? + Cho các số thực dương a, b thỏa mãn: ab > 202la + 2022b. Chứng minh bắt đẳng thức: a + b > (2021 + 2022)^2.
Đề khảo sát Toán 9 lần 1 năm 2022 - 2023 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 1 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Tư ngày 28 tháng 09 năm 2022. Trích dẫn Đề khảo sát Toán 9 lần 1 năm 2022 – 2023 phòng GD&ĐT Thanh Trì – Hà Nội : + Giải bài toán sau bằng cách lập phương trình: Một ôtô đi từ thành phố Hà Nội lúc 8 giờ sáng, dự định đến thành phố Hải Phòng vào lúc 10 giờ 30 phút sáng cùng ngày. Nhưng mỗi giờ ôtô đã đi chậm hơn so với dự định là 10 km nên 11 giờ 20 phút xe mới tới Hải Phòng. Tính chiều dài quãng đường Hà Nội — Hải Phòng. + Tính chiều cao của cây trong hình bên, biết rằng người đo đứng cách cây 2,25m và khoảng cách từ mắt người đo đến mặt đất là 1,5m. + Cho tam giác ABC vuông tại A, vẽ đường cao AH. Qua H kẻ các đường thẳng vuông góc với AB và AC lần lượt tại D và E. 1) Chứng minh tứ giác ADHE là hình chữ nhật và AD.AB = AE.AC 2) Kẻ AI vuông góc với DE (I thuộc DE), AI cắt BC tại M. Chứng minh tam giác ABC đồng dạng tam giác AED và M là trung điểm của BC. 3) Tam giác ABC cần thêm điều kiện gì để diện tích tứ giác ADHE đạt giá trị lớn nhất.
Đề khảo sát Toán 9 đầu năm học 2022 - 2023 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 đầu năm học 2022 – 2023 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 29 tháng 09 năm 2022. Trích dẫn Đề khảo sát Toán 9 đầu năm học 2022 – 2023 trường THCS Giảng Võ – Hà Nội : + Mặt cắt của một ngôi nhà có phần mái có dạng tam giác ABC cân tại A. Biết CH = 4,5m và độ dốc của mái là C = 25°. Tính chiều cao AH của mái nhà (đơn vị: mét, làm tròn đến chữ số thập phân thứ nhất). + Cho tam giác ABC vuông tại A có AM là đường cao. Gọi E và F lần lượt là chân các đường vuông góc kẻ từ điểm H đến các đường thẳng AB và AC. 1) Giả sử AB = 6 cm, BC = 10 cm. Tính độ dài các đoạn thẳng BH, AH. 2) Chứng minh rằng AE.AB = AF.AC và cos ABF = AC/BC. 3) Gọi O là giao điểm của AH và EF. Trên tia đối của tia AH lấy điểm M, kẻ BD vuông góc với CM tại D. Biết rằng SABC. Chứng minh ba điểm B, O, D thẳng hàng. + Cho các số thực x, y, z >= 0 thỏa mãn x + y + z = 19 và x + y + z = 5. Tìm giá trị lớn nhất của x.
Đề khảo sát chất lượng Toán 9 đầu năm 2022 - 2023 trường THCS Chu Văn An - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 đầu năm học 2022 – 2023 trường THCS Chu Văn An, quận Tây Hồ, thành phố Hà Nội. Trích dẫn Đề khảo sát chất lượng Toán 9 đầu năm 2022 – 2023 trường THCS Chu Văn An – Hà Nội : + Rút gọn biểu thức. Giải phương trình sau. + Một tổ sản xuất theo kế hoạch mỗi ngày phải sản xuất 50 sản phẩm. Khi thực hiện, do cải tiến kỹ thuật nên mỗi ngày họ sản xuất được 60 sản phẩm. Do đó tổ đã hoàn thành trước kế hoạch 1 ngày. Hỏi theo kế hoạch tổ phải sản xuất bao nhiêu sản phẩm. + Cho tam giác ABC cân tại A, đường cao AH. Kẻ HE vuông góc với AB; HD vuông góc với AC. a) Chứng minh AH2 = AE.AB b) Chứng tỏ rằng: CD.CA = BE.AB c) Gọi giao điểm của ED và AH là M. Cho AM = 3MH và diện tích tam giác ABC bằng 16 cm. Tính diện tích tứ giác BEDC.