Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải bài toán bằng cách lập phương trình - hệ phương trình

Tài liệu gồm 76 trang, hướng dẫn phương pháp giải bài toán bằng cách lập phương trình – hệ phương trình, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. LOẠI 1 : BÀI TOÁN LIÊN QUAN TỚI DIỆN TÍCH, TAM GIÁC, TỨ GIÁC. A. TÓM TẮT LÝ THUYẾT – PHƯƠNG PHÁP GIẢI I. Các bước giải Bước 1: Lập phương trình hoặc hệ phương trình: + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn. + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị). + Dựa vào các dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình. Bước 2: Giải phương trình hoặc hệ phương trình. Bước 3: Nhận định, so sánh kết quả bài toán, dựa vào điều kiện tìm kết quả thích hợp, trả lời, nêu rõ đơn vị của đáp số. II. Các công thức liên quan + Diện tích tam giác vuông = nữa tích hai cạnh góc vuông. + Diện tích hình chữ nhật = dài nhân rộng. + Diện tích hình vuông = cạnh nhân cạnh. B. CÁC VÍ DỤ MẪU C. BÀI TẬP RÈN LUYỆN D. BÀI TẬP VỀ NHÀ LOẠI 2 : BÀI TOÁN NĂNG SUẤT. A. TÓM TẮT LÝ THUYẾT – PHƯƠNG PHÁP GIẢI I. Các bước giải Bước 1: Lập phương trình hoặc hệ phương trình: + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn. + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị). + Dựa vào các dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình. Bước 2: Giải phương trình hoặc hệ phương trình. Bước 3: Nhận định, so sánh kết quả bài toán, tìm kết quả thích hợp, trả lời, nêu rõ đơn vị của đáp số. II. Các công thức liên quan N = 1/t; t = 1/N; CV = N.t. Trong đó: N: là năng suất làm việc; t: là thời gian hoàn thành công việc; 1: là công việc cần thực hiện; CV: số công việc thực hiện trong thời gian t. B. CÁC VÍ DỤ MẪU C. BÀI TẬP RÈN LUYỆN D. BÀI TẬP VỀ NHÀ LOẠI 3 : BÀI TOÁN LIÊN QUAN TỚI CHUYỂN ĐỘNG. A. TÓM TẮT LÝ THUYẾT – PHƯƠNG PHÁP GIẢI I. Các bước giải Bước 1: Lập phương trình hoặc hệ phương trình: + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn. + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị). + Dựa vào các dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình. Bước 2: Giải phương trình hoặc hệ phương trình. Bước 3: Nhận định, so sánh kết quả bài toán tìm kết quả thích hợp, trả lời, nên rõ đơn vị của đáp số. II. Các công thức liên quan + Quãng đường = Vận tốc . Thời gian. + v_xuôi = v_thực + v_nước. + v_ngược = v_thực – v_nước. + v_xuôi – v_ngược = 2v_nước. B. CÁC VÍ DỤ MẪU C. BÀI TẬP RÈN LUYỆN D. BÀI TẬP VỀ NHÀ LOẠI 4 : BÀI TOÁN LIÊN QUAN TỚI CÔNG VIỆC – NƯỚC CHẢY. A. TÓM TẮT LÝ THUYẾT – PHƯƠNG PHÁP GIẢI I. Các bước giải Bước 1: Lập phương trình hoặc hệ phương trình: + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn. + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị). + Dựa vào các dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình. Bước 2: Giải phương trình hoặc hệ phương trình. Bước 3: Nhận định, so sánh kết quả bài toán, tìm kết quả thích hợp, trả lời, nêu rõ đơn vị của đáp số. II. Các công thức liên quan + Quãng đường = Vận tốc . Thời gian. + v_xuôi = v_thực + v_nước. + v_ngược = v_thực – v_nước. + v_xuôi – v_ngược = 2v_nước. B. CÁC VÍ DỤ MẪU C. BÀI TẬP RÈN LUYỆN D. BÀI TẬP VỀ NHÀ LOẠI 5 : CÁC BÀI TOÁN KHÁC. A. TÓM TẮT LÝ THUYẾT – PHƯƠNG PHÁP GIẢI I. Các bước giải Bước 1: Lập phương trình hoặc hệ phương trình: + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn. + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị). + Dựa vào các dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình. Bước 2: Giải phương trình hoặc hệ phương trình. Bước 3: Nhận định, so sánh kết quả bài toán, tìm kết quả thích hợp, trả lời, nêu rõ đơn vị của đáp số. II. Các lưu ý thêm + Toán nồng độ dung dịch: Biết rằng m lít chất tan trong M lít dung dịchthì nồng độ phàn trăm là m/M.100%. + Toán nhiệt lượng: m Kg nước giảm t0C thì toả ra một nhiệt lượng Q = m.t (Kcal). m Kg nước tăng t0C thì thu vào một nhiệt lượng Q = m.t (Kcal). + Toán lãi suất: 1 n A A r n với An: vốn sau n chu kỳ (năm, tháng, …); A: vốn ban đầu; n số chu kỳ (năm, tháng,…). B. CÁC VÍ DỤ MẪU C. BÀI TẬP RÈN LUYỆN D. BÀI TẬP VỀ NHÀ

Nguồn: toanmath.com

Đọc Sách

Chuyên đề sự xác định đường tròn tính chất đối xứng của đường tròn
Tài liệu gồm 32 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề sự xác định đường tròn – tính chất đối xứng của đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 1. A. KIẾN THỨC CẦN NHỚ + Đường tròn. + Vị trí tương đối. + Cách xác định đường tròn. + Tính chất đối xứng. + Độ dài đường tròn và diện tích hình tròn. + Đường kính và dây của đường tròn. + Liên hệ khoảng cách từ tâm đến dây. B. CÁC DẠNG BÀI CƠ BẢN Dạng 1: Tính độ dài đường tròn và diện tích hình tròn. Dạng 2: Chứng minh các điểm cùng thuộc một đường tròn. Dạng 3: Đường kính và dây của đường tròn. Liên hệ khoảng cách từ tâm đến dây. C. CÁC BÀI NÂNG CAO PHÁT TRIỂN TƯ DUY + Chứng minh nhiều điểm cùng thuộc một đường tròn. + Chứng minh một điểm thuộc một đường tròn cố định. + Dựng đường tròn. + Các dạng toán khác. D. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ
Chuyên đề tính diện tích tam giác, diện tích tứ giác nhờ sử dụng các tỉ số lượng giác
Tài liệu gồm 14 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề tính diện tích tam giác, diện tích tứ giác nhờ sử dụng các tỉ số lượng giác, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1 bài số 4. A. KIẾN THỨC CẦN NHỚ Ta đã biết cách tính diện tích tam giác theo một công thức rất quen thuộc là S = 1/2ah, trong đó a là độ dài một cạnh của tam giác, h là chiều cao ứng với cạnh đó. Bây giờ ta vận dụng các tỉ số lượng giác, các hệ thức về cạnh và góc trong tam giác vuông để xây dựng thêm các công thức tính diện tích tam giác, tứ giác. B. BÀI TẬP MINH HỌA C. BÀI TẬP TỰ LUYỆN + Tính diện tích. + Chứng minh các hệ thức. + Tính số đo góc. + Tính độ dài. D. HƯỚNG DẪN GIẢI
Chuyên đề ứng dụng thực tế các tỉ số lượng giác của góc nhọn, thực hành ngoài trời
Tài liệu gồm 13 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề ứng dụng thực tế các tỉ số lượng giác của góc nhọn, thực hành ngoài trời, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1 bài số 5. A. KIẾN THỨC CẦN NHỚ Vận dụng linh hoạt các tỉ số lượng giác của góc nhọn và kiến thức thực tiễn vào xử lý bài tập liên quan. B. BÀI TẬP MINH HỌA CƠ BẢN NÂNG CAO I. Bài tập củng cố kiến thức bản chất toán. II. Bài tập vận dụng vào thực tế.
Chuyên đề một số hệ thức về cạnh và góc trong tam giác vuông
Tài liệu gồm 52 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề một số hệ thức về cạnh và góc trong tam giác vuông, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1 bài số 4. A. KIẾN THỨC CẦN NHỚ I. Định lí Trong một tam giác vuông, mỗi cạnh góc vuông bằng: + Cạnh huyền nhân với sin góc đối hoặc nhân với côsin góc kề. + Cạnh góc vuông kia nhân với tang góc đối hoặc nhân với côtang góc kề. Trong hình bên thì: $b = a\sin B = a\cos C$; $c = a\sin C = a\cos B$; $b = c\tan B = c\cot C$; $c = b\tan C = b\cot B.$ II. Giải tam giác vuông Là tìm tất cả các cạnh và góc của tam giác vuông B khi biết hai yếu tố của nó (trong đó ít nhất có một yếu tố về độ dài). B. MỘT SỐ DẠNG BÀI CƠ BẢN VÀ NÂNG CAO C. BÀI TẬP TỰ LUYỆN D. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ