Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào môn Toán năm 2021 2022 trường THCS Phù Linh Hà Nội

Nội dung Đề thi thử vào môn Toán năm 2021 2022 trường THCS Phù Linh Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào môn Toán năm 2021 2022 trường THCS Phù Linh Hà Nội Đề thi thử vào môn Toán năm 2021 2022 trường THCS Phù Linh Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến bạn đề thi thử vào lớp 10 môn Toán năm học 2021 – 2022 trường THCS Phù Linh, huyện Sóc Sơn, thành phố Hà Nội. Đề thi này bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Đề thi sẽ diễn ra vào thứ Bảy, ngày 22 tháng 05 năm 2021. Dưới đây là một số câu hỏi trích dẫn từ đề thi thử: 1. Trong mặt phẳng tọa độ Oxy, cho parabol (P): 2y = −x và đường thẳng (d): y = mx − m − 2 (m là tham số). Hỏi với m = −2, tọa độ giao điểm của đường thẳng (d) và parabol (P) là gì? Tìm tất cả các giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm biệt có hoành độ x1, x2 thỏa mãn x1 − x2 = 20. 2. Trong tam giác ABC nhọn nội tiếp đường tròn (O; R), ba đường cao AD, BE, CF đều đi qua trực tâm H. Khi kẻ đường kính AK của đường tròn, chứng minh tứ giác BFEC nội tiếp, AB. AC = 2R.AD và MD // BK. Nếu BC là dây cung cố định của đường tròn và A di chuyển trên cung lớn BC, hãy tìm vị trí điểm A để diện tích tam giác AEH lớn nhất. 3. Cho hai số thực dương a, b thỏa mãn điều kiện a + b ≥ 3. Tìm giá trị lớn nhất của biểu thức ab/(a+b)^2. Đây là một số câu hỏi đáng chú ý trong đề thi thử vào lớp 10 môn Toán năm 2021 – 2022 trường THCS Phù Linh. Hy vọng các em sẽ làm tốt và đạt kết quả cao trong kỳ thi này!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên Tin) năm 2021 - 2022 sở GDĐT Hà Nội
Sáng thứ Hai ngày 14 tháng 06 năm 2021, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên Tin) năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán (chuyên Tin) năm 2021 – 2022 sở GD&ĐT Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết, lời giải được trình bày bởi các thành viên CLB Toán Lim: Nguyễn Khang – Nguyễn Văn Hoàng – Đoàn Phương Khang. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên Tin) năm 2021 – 2022 sở GD&ĐT Hà Nội : + Trên bàn có n viên kẹo. Hai bạn An và Bình cùng chơi một trò chơi như sau: Hai bạn luân phiên lấy kẹo trên bàn, mỗi lần chỉ được lấy 1, 2, 3, 4 hoặc 5 viên kẹo và phải lấy số viên kẹo khác với số viên kẹo của bạn còn lại vừa lấy ngay trước đó. Bạn đầu tiên không thể thực hiện được lượt chơi của mình là người thua cuộc. Nếu An là người lấy kẹo trước: 1) Với n = 7, hãy chỉ ra chiến thuật của Bình khiến An là người thua cuộc. 2) Với n = 22, hãy chỉ ra chiến thuật của An khiến Bình là người thua cuộc. + Cho tam giác ABC nội tiếp đường tròn (O) và AB < AC. Gọi I là tâm đường tròn nội tiếp tam giác ABC. Đường thẳng AI cắt đường tròn (O) tại điểm thứ hai M (M khác A). Gọi D, E và F lần lượt là các hình chiếu của điểm I trên các đường thẳng BC, CA và AB. 1) Chứng minh tam giác MBI là tam giác cân. 2) Đường tròn ngoại tiếp tam giác AEF cắt đường tròn (O) tại điểm thứ hai P (P khác A). Chứng minh P, M và D là 3 điểm thẳng hàng. 3) Gọi H là giao điểm của đường thẳng IP và đường thẳng EF. Chứng minh HD song song với AM. + Chứng minh với mỗi số nguyên n, số n2 + 3n + 16 không chia hết cho 25.
Đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2021 - 2022 sở GDĐT Hà Nội
Sáng thứ Hai ngày 14 tháng 06 năm 2021, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên Toán) năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2021 – 2022 sở GD&ĐT Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết, lời giải được trình bày bởi các thành viên CLB Toán Lim: Nguyễn Duy Khương – Hà Huy Khôi – Trần Quang Độ – Nguyễn Đức Toàn – Nguyễn Văn Hoàng. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2021 – 2022 sở GD&ĐT Hà Nội : + Cho các số thực không âm a, b và c thỏa mãn a + b + c = 5. Chứng minh: 2a + 2ab + abc ≤ 18. + Cho tam giác nhọn ABC nội tiếp đường tròn (O), có ∠BAC = 60o và AB < AC. Các đường thẳng BO, CO lần lượt cắt các đoạn thẳng AC, AB tại M, N. Gọi F là điểm chính giữa cung BC lớn. 1. Chứng minh năm điểm A, N, O, M và F cùng thuộc một đường tròn. 2. Gọi P, Q lần lượt là các giao điểm thứ hai của hai tia FN, FM với đường tròn (O).Gọi J là giao điểm của đường thẳng BC và đường thẳng PQ. Chứng minh tia AJ là tia phân giác góc ∠BAC. 3. Gọi K là giao điểm của đường thẳng OJ và đường thẳng CF. Chứng minh AB vuông góc với AK. + Cho A là một tập hợp có 100 phần tử của tập hợp {1,2,··· ,178}. 1. Chứng minh A chứa hai số tự nhiên liên tiếp. 2. Chứng minh với mọi số tự nhiên n thuộc tập hợp {2,3,4,··· ,22}, tồn tại hai phần tử của A có hiệu bằng n.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Hà Nội
Sáng Chủ Nhật ngày 13 tháng 06 năm 2021, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết, lời giải được trình bày bởi các thành viên CLB Toán Lim: Nguyễn Duy Khương – Hà Huy Khôi – Đoàn Phương Khang – Bùi Hồng Hạnh – Nguyễn Đức Toàn – Nguyễn Khang. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Hà Nội : + Giải bài toán sau bằng cáhc lập phương trình hoặc hệ phương trình: Một tổ sản xuất phải làm xong 4800 bộ đồ bảo hộ y tế trong một số ngày nhất định. Thực tế, mỗi ngày tổ đội đã làm được nhiều hơn 100 bộ đồ bảo hộ y tế so với số bộ đồ bảo hộ y tế phải làm trong một ngày theo kế hoạch. Vì thế 8 ngày trước khi hết hạn, tổ sản xuất đã làm xong 4800 bộ đồ bảo hộ y tế đó. Hỏi theo kế hoạch, mỗi ngày tổ đội sản xuất phải làm bao nhiêu bộ đồ bảo hộ y tế? (Giả định rằng số bộ đồ bảo hộ y tế mà tổ đội đó làm xong mỗi ngày là bằng nhau). + Một thùng nước có dạng hình trụ với chiều cao 1,6m và bán kính đáy 0,5m. Người ta sơn toàn bộ phía ngoài mặt xung quanh của thùng nước này (trừ hai mặt đáy). Tính diện tích bề mặt được sơn của thùng nước (lấy π = 3,14). + Cho tam giác ABC vuông tại A. Từ điểm B kẻ tiếp tuyến BM với đường tròn (C;CA) (M là tiếp điểm, M nằm khác phía với A đối với BC). 1) Chứng minh rằng 4 điểm A,C,M,B cùng nằm trên 1 đường tròn. 2) Lấy điểm N trên đoạn AB. Lấy điểm P trên tia đối của tia MB sao cho MP = AN. Chứng minh tam giác CPN cân và AM đi qua trung điểm của NP.
Đề tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Bình Định; kỳ thi được diễn ra vào thứ Sáu ngày 11 tháng 06 năm 2021.