Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi cuối học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường THPT Thường Tín Hà Nội

Nội dung Đề thi cuối học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường THPT Thường Tín Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh khối lớp 11 đề thi cuối kì 1 Toán lớp 11 năm học 2020 – 2021 trường THPT Thường Tín – Hà Nội; đề thi được biên soạn theo hình thức trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 25 câu, chiếm 5,0 điểm, phần tự luận gồm 04 câu, chiếm 5,0 điểm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi cuối kì 1 Toán lớp 11 năm 2020 – 2021 trường THPT Thường Tín – Hà Nội : + Cho tứ diện S.ABCD có đáy ABCD là hình thang (AB // CD). Gọi M, N và P lần lượt là trung điểm của BC, AD, và SA. Giao tuyến của hai mặt phẳng (SAB) và (MNP). A. Đường thẳng PM. B. Đường thẳng qua S và song song với AB. C. Đường thẳng qua P và song song với AB. D. Đường thẳng qua M và song song với SC. + Trong đề cương ôn tập bộ môn Toán lớp 11 trường THPT Thường Tín (Hà Nội) có 15 câu hỏi Đại số & Giải tích 11 và 10 câu hỏi Hình học 11. Hỏi có bao nhiêu cách chọn ngẫu nhiên 5 câu hỏi có cả Đại số & Giải tích 11 và Hình học 11 để lập một đề kiểm tra 15 phút? + Cho lăng trụ ABCD.A’B’C’D’ có hai đáy là các hình bình hành. Các điểm M, N, P lần lượt là trung điểm của cạnh AD, BC, CC’. Xét các khẳng định sau: (I) Mặt phẳng (MNP) cắt cạnh A’D’. (II) Mặt phẳng (MNP) cắt cạnh DD’ tại trung điểm của DD’. (III) Mặt phẳng (MNP) song song với mặt phẳng (ABC’D’). Trong các khẳng định trên, số khẳng định đúng là?

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Mạc Đĩnh Chi TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Mạc Đĩnh Chi TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Mạc Đĩnh Chi, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Mạc Đĩnh Chi – TP HCM : + Trong kỳ thi học kỳ 1, phòng thi số 1 có 24 học sinh trong đó có 4 học sinh tên An, Bảo, Cường, Danh. Trong phòng thi có 24 bàn xếp thành 4 dãy theo hàng dọc, mỗi dãy có 6 bàn. Giám thị phòng thi bố trí cho các học sinh ngồi ngẫu nhiên vào 24 bàn, mỗi bàn 1 học sinh. Tính xác suất 4 bạn có tên trên ngồi cạnh nhau theo cùng một hàng dọc. + Xác suất ném bóng vào rổ thành công trong mỗi lần ném của bốn học sinh An, Bảo, Cường, Danh lần lượt là 0.5, 0.6, 0.7, 0.8. Cho mỗi học sinh trên ném bóng vào rổ 1 lần. Tính xác suất có ít nhất một người ném thành công. + Trên một đường tròn cho n điểm phân biệt. Biết số tam giác có 3 đỉnh lấy từ n điểm này nhiều hơn số đoạn thẳng có 2 đầu mút cũng được lấy từ n điểm này là 75. Tìm n.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Marie Curie TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Marie Curie TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Marie Curie, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Marie Curie – TP HCM : + Trường X tổ chức kiểm tra tập trung 3 môn Toán, Văn và Ngoại ngữ cho học sinh khối 11 trong thời gian một tuần (không tổ chức kiểm tra vào ngày chủ nhật). Biết rằng mỗi ngày học sinh chỉ kiểm tra một môn. Tính xác suất để môn Toán kiểm tra đầu tiên và các môn không kiểm tra vào hai ngày liên tiếp nhau. + Lớp 11A có 30 học sinh trong đó có 20 nam và 10 nữ. Có bao nhiêu cách chọn ra một nhóm 7 học sinh của lớp 11A gồm 4 học sinh nam và 3 học sinh nữ? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của SB, OC và SD. a) Chứng minh đường thẳng MP song song với mặt phẳng (ABCD). b) Tìm giao tuyến của mặt phẳng (MNP) và mặt phẳng (ABCD). c) Tìm thiết diện tạo bởi mặt phẳng (MNP) và hình chóp S.ABCD.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Trung Trực TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Nguyễn Trung Trực TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Nguyễn Trung Trực, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Nguyễn Trung Trực – TP HCM : + Trong một hộp đựng 20 quả nhãn, 15 quả nho, 10 quả sơri. Lấy ngẫu nhiên ra 3 quả. Tính xác suất để lấy ra được các loại quả khác nhau. + Một người có 10 đôi giày khác nhau. Trong lúc đi du lịch vội vã nên đã lấy ngẫu nhiên 4 chiếc giày. Tính xác suất để người đó không lấy được đôi giầy nào đúng. + Cho hình chóp S.ABCD có đáy là tứ giác có các cặp cạnh đối không song song. AB cắt CD tại E. Gọi I, J lần lượt là trung điểm của SA, SB. Lấy N trên SD sao cho SN = 2ND. Lấy M là giao điểm của SC với (IJN). Chứng minh IJ, MN và SE đồng quy.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Thăng Long TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Thăng Long TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Thăng Long, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Thăng Long – TP HCM : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, hai đường chéo AC và BD cắt nhau tại O. Điểm M là trung điểm SA, điểm N thuộc cạnh CD sao cho ND = 3NC. a. Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). b. Chứng minh rằng đường thẳng SC song song với mặt phẳng (OMN). c. Tìm giao điểm của đường thẳng MN với mặt phẳng (SBD). + Một hộp kín chứa 8 viên bi trắng, 7 viên bi đỏ và 9 viên bi xanh. Lấy ngẫu nhiên 7 viên bi từ hộp kín. Tính xác suất để trong các viên bi lấy ra có đúng 2 viên bi đỏ và 3 viên bi xanh. + Một hộp bóng đèn gồm có 50 chiếc trong đó bao gồm 30 chiếc loại I, 14 chiếc loại II và 6 chiếc loại III. Lấy ngẫu nhiên từ hộp 8 chiếc bóng đèn. Tính xác suất để trong các bóng đèn lấy ra có ít nhất 5 chiếc loại III.