Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc

Nội dung Đề tuyển sinh môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2020 - 2021 sở GD&ĐT Vĩnh Phúc Đề tuyển sinh môn Toán năm 2020 - 2021 sở GD&ĐT Vĩnh Phúc Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 sở GD&ĐT Vĩnh Phúc bao gồm 02 phần chính: phần trắc nghiệm và phần tự luận. Phần trắc nghiệm có 04 câu hỏi, chiếm 02 điểm. Phần tự luận có 04 câu hỏi, chiếm 08 điểm. Thời gian làm bài thi là 120 phút. Trích đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 sở GD&ĐT Vĩnh Phúc: Cho parabol (P): y = 1/2.x^2 và đường thẳng d: y = 2x + m (với m là tham số). Tìm tất cả các giá trị của tham số m để đường thẳng d cắt parabol (P) tại hai điểm phân biệt thoả mãn điều kiện: (x1x2 + 1)^2 = x1 + x2 + x1x2 + 3. Một đội xe hàng ngày chở 140 tấn hàng, nhưng vượt mức 5 tấn mỗi ngày. Với việc vượt mức này, họ hoàn thành kế hoạch trước 1 ngày và chở thêm 10 tấn hàng. Hỏi số ngày dự kiến theo kế hoạch là bao nhiêu? Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Kẻ hai tiếp tuyến AB và AC đến (O), và kẻ đường kính BD của đường tròn. Đường thẳng đi qua O vuông góc với đường AD và cắt AD, BC tại K, E. Chứng minh rằng các tứ giác ABOC, AIKE đều nội tiếp đường tròn, OI.OA = OK.OE, và tính độ dài đoạn thẳng BE khi biết OA = 5 cm, R = 3cm. Đề tuyển sinh này đưa ra các vấn đề khá phức tạp và đòi hỏi sự logic, kiến thức và kỹ năng tính toán từ phía thí sinh. Hy vọng các thí sinh sẽ tự tin và tỏa sáng trong kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT chuyên năm 2017 môn Toán sở GD và ĐT Bà Rịa - Vũng Tàu
Đề thi tuyển sinh lớp 10 THPT chuyên năm 2017 môn Toán sở GD và ĐT Bà Rịa – Vũng Tàu gồm 5 câu hỏi tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho parabol (P): y = –x^2 và đường thẳng (d): y = 4x – m a) Vẽ parabol (P) b) Tìm tất cả các giá trị của tham số m để (d) và (P) có đúng một điểm chung + Cho nửa đường tròn (O) có đường kính AB = 2R. CD là dây cung thay đổi của nửa đường tròn sao cho CD = R và C thuộc cung AD (C khác A và D khác B). AD cắt BC tại H, hai đường thẳng AC và BD cắt nhau tại F. [ads] a) Chứng minh tứ giác CFDH nội tiếp b) Chứng minh CF.CA = CH.CB c) Gọi I là trung diểm của HF. Chứng minh tia OI là tia phân giác của góc COD d) Chứng minh điểm I thuộc một đường tròn cố định khi CD thay đổi
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS Lương Thế Vinh - TP. HCM
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS Lương Thế Vinh – TP. HCM gồm 6 bài tập tự luận, đề thi có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O; R) và điểm M nằm ngoài (O). Vẽ 2 tiếp tuyến MA, MB và cát tuyến MCD của (O) (A, B là tiếp điểm, C nằm giữa M và D; A và C nằm khác phía đối với đường thẳng MO). Gọi I là trung điểm CD. [ads] a) Chứng minh: MB^2 = MC.MD b) Chứng minh tứ giác AOIB nội tiếp c) Tia BI cắt (O) tại J. Chứng minh: AD^2 = AJ.MD d) Đường thẳng qua I song song với DB cắt AB tại K, tia CK cắt OB tại G. Tính bán kính đường tròn ngoại tiếp ∆CIG theo R + Hàng tháng một người gửi vào ngân hàng 5.000.000đ với lãi suất 0,6%/tháng. Hỏi sau 15 tháng người đó nhận được số tiền cả gốc lẫn lãi là bao nhiêu? Biết rằng hàng tháng người đó không rút lãi ra.
Tuyển chọn các đề thi tuyển sinh vào lớp 10 môn Toán - Nguyễn Hoàng Nam
+ Được tuyển chọn từ tổng hợp các đề thi hay nhất của các tỉnh thành phố năm học 2013 – 2014. + Có bổ sung một số câu hỏi trọng tâm thường ra thi. + Các bài hình học khó đều có hình vẽ sẵn, được ký hiệu và ghi sơ đồ để hướng dẫn học sinh suy nghĩ.
Tuyển tập 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán
Tài liệu gồm 32 trang tuyển tập 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán. Một số đề có hướng dẫn giải.