Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm học thêm chuyên đề xác suất thực nghiệm

Nội dung Tài liệu dạy thêm học thêm chuyên đề xác suất thực nghiệm Bản PDF - Nội dung bài viết Tài liệu dạy thêm học thêm chuyên đề xác suất thực nghiệmPHẦN I: TÓM TẮT LÝ THUYẾTPHẦN II: CÁC DẠNG BÀIDạng 1: Liệt kê các kết quả và số phần tử của tập hợpDạng 2: Nhận biết sự kiện liên quan đến phép thửDạng 3: Tính xác suất thực nghiệm Tài liệu dạy thêm học thêm chuyên đề xác suất thực nghiệm Tài liệu dạy thêm học thêm chuyên đề xác suất thực nghiệm là một tài liệu gồm 8 trang, được thiết kế để tổng hợp và tóm tắt lý thuyết, cung cấp phương pháp giải các dạng toán và bài tập chuyên đề xác suất thực nghiệm, nhằm hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm và học thêm môn Toán. PHẦN I: TÓM TẮT LÝ THUYẾT Hướng dẫn tóm tắt lý thuyết giúp học sinh lớp 6 nắm vững kiến thức về xác suất thực nghiệm. Tài liệu đưa ra giải thích và định nghĩa các khái niệm cơ bản như: phép thử, kết quả, tập hợp các kết quả có thể xảy ra, sự kiện, xác suất thực nghiệm. Đồng thời, nó cũng trình bày công thức tính xác suất thực nghiệm để giúp học sinh hiểu rõ cách tính toán. PHẦN II: CÁC DẠNG BÀI Dạng 1: Liệt kê các kết quả và số phần tử của tập hợp Dạng bài này yêu cầu liệt kê tất cả các kết quả có thể xảy ra trong phép thử và đếm số phần tử của tập hợp đó. Liệt kê các kết quả có thể xảy ra là quá trình ghi lại các khả năng xảy ra trong phép thử. Tập hợp tất cả kết quả có thể xảy ra được biểu diễn dưới dạng Xa1a2a3...an. Số phần tử của tập hợp có thể được đếm hoặc ước tính bằng một quy tắc cụ thể. Dạng 2: Nhận biết sự kiện liên quan đến phép thử Trường hợp này, các sự kiện liên quan tới phép thử được mô tả bởi một tập con n(A) của tập hợp kết quả có thể xảy ra trong phép thử. Sự kiện chắc chắn là sự kiện luôn xảy ra khi thực hiện phép thử. Sự kiện không thể là sự kiện không bao giờ xảy ra khi phép thử được thực hiện. Sự kiện có thể là sự kiện cũng có thể xảy ra khi phép thử được thực hiện. Dạng 3: Tính xác suất thực nghiệm Trong dạng bài này, cần tính xác suất thực nghiệm bằng cách lặp lại một hoạt động n lần. Gọi n(A) là số lần sự kiện A xảy ra trong n lần thực hiện hoạt động đó. Công thức tính xác suất thực nghiệm là p(A) = số lần sự kiện A xảy ra / tổng số lần thực hiện hoạt động. Đây được gọi là xác suất thực nghiệm của sự kiện A sau n hoạt động vừa thực hiện. Đây là một tài liệu hữu ích giúp giáo viên và học sinh lớp 6 nắm vững và áp dụng kiến thức về xác suất thực nghiệm. Tài liệu có cấu trúc rõ ràng, đầy đủ và dễ hiểu, giúp học sinh rèn luyện kỹ năng giải các dạng toán liên quan đến xác suất thực nghiệm. Để tải về tài liệu, xin vui lòng nhấp vào đường link sau: http://example.com/file

Nguồn: sytu.vn

Đọc Sách

Tài liệu dạy thêm - học thêm chuyên đề xác suất thực nghiệm
Tài liệu gồm 08 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề xác suất thực nghiệm, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I : TÓM TẮT LÍ THUYẾT. PHẦN II : CÁC DẠNG BÀI. Dạng 1 . Liệt kê các kết quả có thể xảy ra của phép thử, số phần tử của tập hợp. Liệt kê là thực hiện các hoạt động của phép thử, để tìm các khả năng có thể xảy ra. Tập hợp tất cả các kết quả có thể xảy ra được viết dạng X a a a a 1 2 3 n. Số phần tử của tập hợp có thể kiểm đếm hoặc dùng một quy tắc. Dạng 2 . Nhận bết sự kiện liên quan đến phép thử. Một sự kiện A liên quan tới phép thử được mô tả bởi một tập con n (A) nào đó của phép liệt kê các kết quả có thể xảy ra trong phép thử. Sự kiện chắc chắn là sự kiện luôn xảy ra khi thực hiện phép thử. Sự kiện không thể là sự kiện không bao giờ xảy ra khi phép thử được thực hiện. Sự kiện có thể là sự kiện cũng có thể xảy ra khi phép thử được thực hiện. Dạng 3 . Tính xác xuất thực nghiệm. Công thức tính xác suất thực nghiệm: Thực hiện lặp đi lặp lại một hoạt động nào đó n lần. Gọi n A là số lần sự kiện A xảy ra trong n lần đó. p(A) = số lần sự kiện A xảy ra / tổng số lần thực hiện hoạt động. (P A được gọi là xác suất thực nghiệm của sự kiện A sau n hoạt động vừa thực hiện).
Tài liệu dạy thêm - học thêm chuyên đề bảng thống kê và các dạng biểu đồ
Tài liệu gồm 26 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề bảng thống kê và các dạng biểu đồ, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. DẠNG 1 : Thu thập và phân loại dữ liệu. – Để đánh giá tính hợp lý của dữ liệu ta cần đưa ra các tiêu chí đánh giá, ví dụ như dữ liệu phải: + Đúng định dạng. + Nằm trong phạm vi dự kiến. – Cách phân loại dữ liệu: Những dữ liệu dưới dạng số được gọi là số liệu. DẠNG 2 : Biểu diễn dữ liệu trên bảng. Bảng số liệu (có 2 dòng): + Các đối tượng thống kê biểu diễn ở dòng đầu tiên. + Ứng với mỗi đối tượng thống kê có một số liệu thống kê theo tiêu chí, lần lượt biểu diễn ở dòng thứ hai (theo cột tương ứng). DẠNG 3 : Vẽ biểu đồ tranh và phân tích số liệu liên quan. Dựa vào số liệu cho trước, lựa chọn mỗi biểu tượng tranh ảnh tượng trưng cho một số cụ thể, biểu diễn các số liệu thống kê theo biểu tượng tranh ảnh. Dựa vào biểu đồ tranh, xác định được số liệu thống kê và biết nhận xét các vấn đề liên quan đến biểu đồ tranh. DẠNG 4 : Biểu đồ cột, biểu đồ cột kép. Dựa vào bảng thống kê, vẽ được biểu đồ cột (cột kép) tương ứng. Xử lý số liệu liên quan đến biểu đồ tranh để vẽ được biểu đồ cột.
Tài liệu dạy thêm - học thêm chuyên đề bài toán về tỉ số và tỉ số phần trăm
Tài liệu gồm 10 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề bài toán về tỉ số và tỉ số phần trăm, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Tỉ số của hai đại lượng. Tìm tỉ số của a và b là a b. Dạng 2 . Tỉ số phần trăm của hai đại lượng. Tìm tỉ số phần trăm của hai số a và b: Bước 1: Viết tỉ số a b. Bước 2: Tính số a 100 b và viết thêm % vào bên phải số vừa tìm được. Cách tính a 100 b: Cách 1: Lấy a chia b rồi nhân với 100. Cách 2: Lấy a nhân 100 b rồi chia b. Vậy tỉ số phần trăm của hai số a và b là: 100 a b %. Dạng 3 . Bài toán thực tế. Tỉ số phần trăm của hai đại lượng a và b (cùng loại và cùng đơn vị đo) là tỉ số phần trăm của hai đại lượng đó (C%). Tìm giá trị phần trăm của một số cho trước: tìm m% của số a là: 100 m a. Tìm một số khi biết giá trị phần trăm của số đó: tìm một số khi biết m% của số đó là b như sau: b 100 m. Trong thực tế: tính phần trăm học sinh khá, giỏi … Tính lãi suất tín dụng, thành phần các chất trong dược phẩm, hóa học … Tính giảm giá, lợi nhuận, thua lỗ …. Từ tỉ lệ bản đồ, bản vẽ tính được thực tế: Muốn tìm tỉ lệ xích của một bản vẽ hoặc một bản đồ ta tìm tỉ số khoảng cách giữa hai điểm tương ứng trên bản vẽ hoặc bản đồ và khoảng cách giữa hai điểm trên thực tế.
Tài liệu dạy thêm - học thêm chuyên đề tính toán với số thập phân
Tài liệu gồm 08 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề tính toán với số thập phân, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Tính toán cộng, trừ, nhân, chia thông thường. Áp dụng các quy tắc như đã nêu trong phần lý thuyết. Dạng 2 . Tính giá trị biểu thức. Áp dụng các tính chất như đã nêu trong phần lý thuyết. Dạng 3 . Tìm x. Áp dụng các quy tắc như đã nêu trong phần lý thuyết.