Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm học thêm chuyên đề xác suất thực nghiệm

Nội dung Tài liệu dạy thêm học thêm chuyên đề xác suất thực nghiệm Bản PDF - Nội dung bài viết Tài liệu dạy thêm học thêm chuyên đề xác suất thực nghiệmPHẦN I: TÓM TẮT LÝ THUYẾTPHẦN II: CÁC DẠNG BÀIDạng 1: Liệt kê các kết quả và số phần tử của tập hợpDạng 2: Nhận biết sự kiện liên quan đến phép thửDạng 3: Tính xác suất thực nghiệm Tài liệu dạy thêm học thêm chuyên đề xác suất thực nghiệm Tài liệu dạy thêm học thêm chuyên đề xác suất thực nghiệm là một tài liệu gồm 8 trang, được thiết kế để tổng hợp và tóm tắt lý thuyết, cung cấp phương pháp giải các dạng toán và bài tập chuyên đề xác suất thực nghiệm, nhằm hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm và học thêm môn Toán. PHẦN I: TÓM TẮT LÝ THUYẾT Hướng dẫn tóm tắt lý thuyết giúp học sinh lớp 6 nắm vững kiến thức về xác suất thực nghiệm. Tài liệu đưa ra giải thích và định nghĩa các khái niệm cơ bản như: phép thử, kết quả, tập hợp các kết quả có thể xảy ra, sự kiện, xác suất thực nghiệm. Đồng thời, nó cũng trình bày công thức tính xác suất thực nghiệm để giúp học sinh hiểu rõ cách tính toán. PHẦN II: CÁC DẠNG BÀI Dạng 1: Liệt kê các kết quả và số phần tử của tập hợp Dạng bài này yêu cầu liệt kê tất cả các kết quả có thể xảy ra trong phép thử và đếm số phần tử của tập hợp đó. Liệt kê các kết quả có thể xảy ra là quá trình ghi lại các khả năng xảy ra trong phép thử. Tập hợp tất cả kết quả có thể xảy ra được biểu diễn dưới dạng Xa1a2a3...an. Số phần tử của tập hợp có thể được đếm hoặc ước tính bằng một quy tắc cụ thể. Dạng 2: Nhận biết sự kiện liên quan đến phép thử Trường hợp này, các sự kiện liên quan tới phép thử được mô tả bởi một tập con n(A) của tập hợp kết quả có thể xảy ra trong phép thử. Sự kiện chắc chắn là sự kiện luôn xảy ra khi thực hiện phép thử. Sự kiện không thể là sự kiện không bao giờ xảy ra khi phép thử được thực hiện. Sự kiện có thể là sự kiện cũng có thể xảy ra khi phép thử được thực hiện. Dạng 3: Tính xác suất thực nghiệm Trong dạng bài này, cần tính xác suất thực nghiệm bằng cách lặp lại một hoạt động n lần. Gọi n(A) là số lần sự kiện A xảy ra trong n lần thực hiện hoạt động đó. Công thức tính xác suất thực nghiệm là p(A) = số lần sự kiện A xảy ra / tổng số lần thực hiện hoạt động. Đây được gọi là xác suất thực nghiệm của sự kiện A sau n hoạt động vừa thực hiện. Đây là một tài liệu hữu ích giúp giáo viên và học sinh lớp 6 nắm vững và áp dụng kiến thức về xác suất thực nghiệm. Tài liệu có cấu trúc rõ ràng, đầy đủ và dễ hiểu, giúp học sinh rèn luyện kỹ năng giải các dạng toán liên quan đến xác suất thực nghiệm. Để tải về tài liệu, xin vui lòng nhấp vào đường link sau: http://example.com/file

Nguồn: sytu.vn

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm số đo góc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề số đo góc, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Số đo góc. a) Số đo của một góc. Mỗi góc có một số đo góc (đơn vị là độ). Hai tia trùng nhau được coi là góc có số đo bằng 0. Cách đo góc: + Bước 1: Đặt thước đo góc sao cho tâm của thước trùng với đỉnh của góc và một cạnh của góc đi qua vạch số 0 trên thước. + Bước 2: Xem cạnh thứ hai của góc đi qua vạch nào của thước thì đó chính là số đo của góc. Lưu ý: Trên thước có hai hàng số ứng với cung lớn và cung nhỏ. Khi đọc kết quả cần đọc số nằm trên cùng một cung với số 0 mà cạnh thứ nhất đi qua. Nếu hai góc A và B có số đo bằng nhau, ta nói hai góc đó bằng nhau. Ta viết A B. Nếu số đo của góc A nhỏ hơn số đo của góc B thì ta nói góc A nhỏ hơn góc B. Ta viết A B. b) Các loại góc: Góc nhọn Góc vuông Góc tù Góc bẹt. 2. Các dạng toán thường gặp. Dạng 1: Đo góc. Dạng 2: So sánh hai góc. Phương pháp: + Đo các góc cần so sánh. + So sánh số đo của các góc và kết luận của bài toán. Dạng 3: Nhận biết góc vuông, góc nhọn, góc tù, góc bẹt. Phương pháp: Dựa vào số đo của góc để kết luận. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề góc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề góc, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Góc. 1.1. Định nghĩa. Góc là hình gồm hai tia chung gốc. Gốc chung của 2 tia là đỉnh của góc. Hai tia là hai cạnh của góc. – Góc xOy, kí hiệu là xOy; yOx AOB; BOA. – Điểm O là đỉnh của góc. Hai tia Ox; Oy là các cạnh của góc. – Đặc biệt, khi Ox; Oy là hai tia đối nhau, ta có góc bẹt xOy. Chú ý khi viết tên góc: Dùng 3 chữ để viết các góc, chữ ở giữa là đỉnh của góc; hai chữ hai bên cùng với chữ ở giữa là tên của hai tia chung gốc tạo thành hai cạnh của góc. Trên ba chữ của tên góc có kí hiệu. 1.2. Vẽ góc. – Vẽ đỉnh và hai cạnh của góc. 1.3. Điểm trong của góc. – Điểm M nằm trong góc xOy thì được gọi là điểm trong của góc xOy. – Điểm N và các điểm nằm trên cạnh của góc xOy không phải là điểm trong của góc xOy. Nâng cao: Công thức tính số góc khi biết n tia chung gốc 2 n n. B. BÀI TẬP TRẮC NGHIỆM 2. Các dạng toán thường gặp. Dạng 1: Nhận biết góc. Phương pháp giải: Để đọc tên và viết kí hiệu góc, ta làm như sau: Bước 1: Xác định đỉnh và 2 cạnh của góc. Bước 2: Kí hiệu góc và đọc tên. Lưu ý: Một góc có thể gọi bằng nhiều cách. Dạng 2: Xác định các điểm trong của góc cho trước. Phương pháp giải: – Điểm M nằm trong góc xOy thì được gọi là điểm trong của góc xOy. – Điểm N và các điểm nằm trên cạnh của góc xOy không phải là điểm trong của góc xOy. Dạng 3: Đếm góc, tính số góc khi biết số tia và ngược lại. Phương pháp giải: Để đếm góc tạo thành từ n tia chung gốc cho trước, ta thường làm theo các cách sau: Cách 1: Vẽ hình và đếm các góc tao bởi tất cả các tia cho trước. Cách 2: Sử dụng công thức tính số góc khi biết n tia.
Tóm tắt lý thuyết và bài tập trắc nghiệm trung điểm của đoạn thẳng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề trung điểm của đoạn thẳng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Trung điểm của đoạn thẳng: Định nghĩa: Trung điểm của đoạn thẳng là điểm nằm giữa hai đầu mút của đoạn thẳng và cách đều hai đầu mút đó. Chú ý: Điểm I là trung điểm của đoạn thẳng AB. + Điểm I nằm giữa hai điểm A và B và IA IB. + Hoặc IA IB AB IA IB. + Hoặc 1 2 IA IB AB. 2. Các dạng toán thường gặp. Dạng 1: Tính độ dài đoạn thẳng. Phương pháp: Ta sử dụng: Nếu M là trung điểm của đoạn thẳng AB thì 1 2 MA MB AB. Dạng 2: Chứng tỏ một điểm là trung điểm của đoạn thẳng. Phương pháp: Để chứng tỏ điểm I là trung điểm của đoạn thẳng AB ta có 3 cách. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm đoạn thẳng, độ dài đoạn thẳng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề đoạn thẳng, độ dài đoạn thẳng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Đoạn thẳng AB là gì? + Đoạn thẳng AB hay đoạn thẳng BA là hình gồm hai điểm A, B cùng với các điểm nằm giữa A và B. + A, B là hai đầu mút (mút) của đoạn thẳng AB. 2. Độ dài đoạn thẳng. + Mỗi đoạn thẳng có một độ dài. Khi chọn một đơn vị độ dài thì độ dài mỗi đoạn thẳng được biểu diễn bởi một số dương (thường viết kèm đơn vị). + Độ dài đoạn thẳng AB còn gọi là khoảng cách giữa hai điểm A và B. Ta quy ước khoảng cách giữa hai điểm trùng nhau bằng 0 (đơn vị). 3. So sánh độ dài hai đoạn thẳng. + Hai đoạn thẳng AB và EG có cùng độ dài. Ta viết AB EG và nói đoạn thẳng AB bằng đoạn thẳng EG. + Đoạn thẳng AB có độ dài nhỏ hơn đoạn thẳng CD. Ta viết AB CD và nói AB ngắn hơn CD. Hoặc CD AB và nói CD dài hơn AB. 4. Các dạng toán thường gặp. Dạng 1: Nhận biết đoạn thẳng. Phương pháp: Ta sử dụng định nghĩa: Đoạn thẳng AB là hình gồm hai điểm A, B cùng với các điểm nằm giữa A và B. Dạng 2: Xác định số đoạn thẳng. Phương pháp: Với n điểm phân biệt cho trước n N n 2 thì số đoạn thẳng vẽ được là 1 2 n n. Dạng 3: Tính độ dài đoạn thẳng. So sánh hai đoạn thẳng. Phương pháp: + Tìm độ dài mỗi đoạn thẳng: Ta vận dụng kiến thức “Nếu điểm M nằm giữa hai điểm A và B thì AM MB AB”. + Ta so sánh các đoạn thẳng: Hai đoạn thẳng bằng nhau nếu có cùng độ dài. Đoạn thẳng lớn hơn nếu có độ dài lớn hơn. B. BÀI TẬP TRẮC NGHIỆM