Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập biểu thức đại số Toán 8 Chân Trời Sáng Tạo

Tài liệu gồm 272 trang, được tổng hợp bởi thầy giáo Nguyễn Bỉnh Khôi, bao gồm phân dạng và bài tập chủ đề biểu thức đại số trong chương trình môn Toán 8 sách Chân Trời Sáng Tạo. Chương 1 . ĐA THỨC NHIỀU BIẾN 2. Bài 1 . ĐƠN THỨC VÀ ĐA THỨC NHIỀU BIẾN 2. A Trọng tâm kiến thức 2. 1. Đơn thức nhiều biến và đơn thức thu gọn 2. 2. Đơn thức đồng dạng 2. 3. Đa thức nhiều biến. Đa thức thu gọn 2. 4. Bậc của đa thức 3. B Các dạng bài tập và phương pháp giải 3. + Dạng 1. Xác định đơn thức, đa thức 3. + Dạng 2. Tính tích các đơn thức 4. + Dạng 3. Xác định bậc của đơn thức 4. + Dạng 4. Tính giá trị của đơn thức 6. + Dạng 5. Nhận biết đơn thức đồng dạng 7. + Dạng 6. Cộng trừ các đơn thức đồng dạng 8. + Dạng 7. Tìm đơn thức thỏa mãn đẳng thức 9. + Dạng 8. Thu gọn đa thức 9. + Dạng 9. Tìm bậc của đa thức 10. + Dạng 10. Vận dụng 11. C Bài tập vận dụng 12. Bài 2 . CÁC PHÉP TOÁN VỚI ĐA THỨC NHIỀU BIẾN 18. A Trọng tâm kiến thức 18. 1. Phép cộng, trừ hai đa thức nhiều biến 18. 2. Phép nhân, chia hai đa thức nhiều biến 18. B Các dạng bài tập và phương pháp giải 19. + Dạng 1. Cộng trừ, nhân chia hai đa thức 19. + Dạng 2. Tìm đa thức thỏa mãn đẳng thức 26. + Dạng 3. Bài toán liên quan đến chia hết 27. + Dạng 4. Rút gọn và tính giá trị của biểu thức 29. + Dạng 5. Tìm giá trị của biến x 32. + Dạng 6. Chứng minh giá trị của một biểu thức không phụ thuộc vào một biến nào đó 34. + Dạng 7. Chứng minh đẳng thức 35. + Dạng 8. Vận dụng 37. C Bài tập vận dụng 38. LUYỆN TẬP CHUNG 1 51. A Đơn thức 51. B Đa thức. Cộng trừ đa thức 57. C Phép nhân đa thức 63. D Phép chia đa thức 67. E Vận dụng 70. Bài 3 . NHỮNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ 74. A Trọng tâm kiến thức 74. B Các dạng bài tập và phương pháp giải 74. + Dạng 1. Vận dụng hằng đẳng thức để tính 74. + Dạng 2. Rút gọn và tính giá trị của biểu thức 76. + Dạng 3. Chứng minh giá trị của biểu thức không phụ thuộc vào các biến 78. + Dạng 4. Chứng minh đẳng thức 78. + Dạng 5. Tìm x thỏa mãn đẳng thức 79. + Dạng 6. Chứng minh chia hết 80. + Dạng 7. Chứng minh giá trị của một biểu thức luôn luôn dương (hay âm) với mọi giá trị của biến 80. + Dạng 8. Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức P (x) = ax2 + bx + c 81. + Dạng 9. Vận dụng 82. C Bài tập vận dụng 83. LUYỆN TẬP CHUNG 2 95. A Những hằng đẳng thức đáng nhớ 95. Bài 4 . VẬN DỤNG HẰNG ĐẲNG THỨC VÀO PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ 102. A Trọng tâm kiến thức 102. 1. Phương pháp đặt nhân tử chung 102. 2. Phương pháp nhóm hạng tử 102. 3. Phương pháp dùng hằng đẳng thức 102. B Các dạng bài tập và phương pháp giải 102. + Dạng 1. Phương pháp đặt nhân tử chung 102. + Dạng 2. Phương pháp nhóm các hạng tử 104. + Dạng 3. Phương pháp dùng hằng đẳng thức 107. + Dạng 4. Phối hợp các phương pháp thông thường 110. + Dạng 5. Phương pháp tách một hạng tử thành nhiều hạng tử 111. + Dạng 6. Phương pháp thêm bớt cùng một hạng tử 113. + Dạng 7. Phương pháp đổi biến 114. + Dạng 8. Tính giá trị của một biểu thức 115. + Dạng 9. Tìm x 118. + Dạng 10. Chứng minh giá trị của biểu thức A chia hết cho số k 122. + Dạng 11. Vận dụng 124. C Bài tập vận dụng 126. LUYỆN TẬP CHUNG 3 146. A Phân tích đa thức thành nhân tử 146. Bài 5 . PHÂN THỨC ĐẠI SỐ 165. A Trọng tâm kiến thức 165. 1. Phân thức đại số 165. 2. Tính chất cơ bản của phân thức 165. 3. Rút gọn phân thức 165. 4. Quy đồng mẫu nhiều phân thức 166. 5. Điều kiện xác định và giá trị của phân thức 166. B Các dạng bài tập và phương pháp giải 166. + Dạng 1. Nhận biết phân thức, xác định tử thức và mẫu thức 166. + Dạng 2. Điều kiện xác định và giá trị của phân thức tại một giá trị đã cho của biến 167. + Dạng 3. Hai phân thức bằng nhau 169. + Dạng 4. Tìm giá trị nhỏ nhất, giá trị lớn nhất của phân thức 171. + Dạng 5. Rút gọn phân thức 172. + Dạng 6. Chứng minh đẳng thức 172. + Dạng 7. Tính giá trị biểu thức 173. + Dạng 8. Chứng minh giá trị biểu thức không phụ thuộc vào biến 174. + Dạng 9. Tìm x thỏa mãn đẳng thức cho trước 175. + Dạng 10. Quy đồng mẫu thức 175. + Dạng 11. Vận dụng 177. C Bài tập vận dụng 178. Bài 6 . CỘNG, TRỪ PHÂN THỨC 185. A Trọng tâm kiến thức 185. 1. Cộng hai phân thức cùng mẫu thức 185. 2. Cộng hai phân thức có mẫu thức khác nhau 185. 3. Phân thức đối 185. 4. Phép trừ 185. B Các dạng bài tập và phương pháp giải 185. + Dạng 1. Cộng, trừ các phân thức cùng mẫu thức 185. + Dạng 2. Cộng, trừ các phân thức không cùng mẫu thức 187. + Dạng 3. Tìm x thõa mãn đẳng thức cho trước 189. + Dạng 4. Rút gọn và tính giá trị biểu thức 190. + Dạng 5. Chứng minh giá trị biểu thức không phụ thuộc vào biến. Chứng minh đẳng thức 190. + Dạng 6. Vận dụng 191. C Bài tập vận dụng 193. Bài 7 . NHÂN, CHIA PHÂN THỨC 200. A Trọng tâm kiến thức 200. 1. Phép nhân các phân thức đại số 200. 2. Phân thức nghịch đảo 200. 3. Phép chia 200. B Các dạng bài tập và phương pháp giải 200. + Dạng 1. Thực hiện phép nhân, phép chia các phân thức 200. + Dạng 2. Rút gọn biểu thức 201. + Dạng 3. Tìm x thỏa mãn đẳng thức cho trước 203. + Dạng 4. Chứng minh giá trị biểu thức không phụ thuộc vào giá trị của biến 203. + Dạng 5. Vận dụng 204. C Bài tập tự luyện 206. LUYỆN TẬP CHUNG 212. A Trọng tâm kiến thức 212. B Các dạng bài tập và phương pháp giải 212. + Dạng 1. Tìm điều kiện của biến để phân thức xác định 212. + Dạng 2. Tìm giá trị của x để phân thức bằng 0 212. + Dạng 3. Rút gọn biểu thức 213. + Dạng 4. Vận dụng 214. C Bài tập vận dụng 215. ÔN TẬP CHƯƠNG I 221. A Đơn thức 221. B Đa thức. Cộng trừ đa thức 225. C Phép nhân đa thức 230. D Phép chia đa thức cho đơn thức 232. E Những hằng đẳng thức đáng nhớ 233. F Phân tích đa thức thành nhân tử 236. G Phân thức đại số. Các phép toán 241. 1. Bài tập rèn luyện 242. 2. Bài tập bổ sung 249.

Nguồn: toanmath.com

Đọc Sách

Lý thuyết, các dạng toán và bài tập phương trình bậc nhất một ẩn
Tài liệu gồm 43 trang, tóm tắt lý thuyết, các dạng toán và bài tập phương trình bậc nhất một ẩn, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 2) phần Đại số chương 3. Bài 1. Mở đầu về phương trình. Bài 2. Phương trình bậc nhất một ẩn và cách giải. + Dạng 1. Xét xem x = a có là nghiệm của phương trình không? + Dạng 2. Xét hai phương trình có tương đương nhau không? + Dạng 3. Nhận dạng phương trình bậc nhất một ẩn số. + Dạng 4. Giải phương trình bậc nhất. Bài 3. Phương trình đưa được về dạng ax + b = 0. + Dạng 1. Tìm chỗ sai và sửa lại các bài giảng phương trình. + Dạng 2. Giải phương trình. + Dạng 3. Giải bài toán bằng cách lập phương trình. Bài 4. Phương trình tích. + Dạng 1. Phương trình dạng a(x).b(x) = 0. + Dạng 2. Phương trình đưa về dạng phương trình tích. Bài 5. Phương trình chứa ẩn ở mẫu. + Dạng 1. Tìm chỗ sai và sửa lại các bài giải phương trình. + Dạng 2. Giải phương trình có chứa ẩn ở mẫu. + Dạng 3. Xác định giá trị của a để biểu thức có giá trị bằng hằng số k cho trước. Bài 6 – Bài 7. Giải bài toán bằng cách lập phương trình. + Dạng 1. Toán về tỉ số và quan hệ giữa các số. + Dạng 2. Toán chuyển động. + Dạng 3. Toán về công việc. + Dạng 4. Toán làm chung công việc. Ôn tập chương III. A. Bài tập ôn trong SGK. B. Bài tập ôn bổ sung.
Lý thuyết, các dạng toán và bài tập đa giác và diện tích đa giác
Tài liệu gồm 33 trang, tóm tắt lý thuyết, các dạng toán và bài tập đa giác và diện tích đa giác, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 1) phần Hình học chương 2. Bài 1. Đa giác và đa giác đều. + Dạng 1. Nhận biết đa giác. + Dạng 2. Tính chất về góc của đa giác. + Dạng 3. Tính chất về số đường chéo của đa giác. + Dạng 4. Đa giác đều. Bài 2. Diện tích hình chữ nhật. + Dạng 1. Tính chất diện tích đa giác. + Dạng 2. Tính diện tích hình chữ nhật. + Dạng 3. Diện tích hình vuông. + Dạng 4. Diện tích tam giác vuông. Bài 3. Diện tích tam giác. + Dạng 1. Cắt và ghép hình. Giải thích công thức tính diện tích tam giác. + Dạng 2. Tính toán, chứng minh về diện tích tam giác. + Dạng 3. Tính độ dài đoạn thẳng bằng cách sử dụng công thức tính diện tích tam giác. + Dạng 4. Sử dụng công thức diện tích để chứng minh các hệ thức. + Dạng 5. Tìm vị trí của điểm để thỏa mãn một đẳng thức về diện tích. + Dạng 6. Tìm diện tích lớn nhất (nhỏ nhất) của một hình. Bài 4. Diện tích hình thang. + Dạng 1. Tính diện tích hình thang. + Dạng 2. Tính diện tích hình bình hành. + Dạng 3. Tìm diện tích lớn nhất (nhỏ nhất) của một hình. Bài 5. Diện tích hình thoi. + Dạng 1. Tính diện tích tứ giác có hai đường chéo vuông góc. + Dạng 2. Tính diện tích hình thoi. + Dạng 3. Tìm diện tích lớn nhất(nhỏ nhất) của một hình. Bài 6. Diện tích đa giác. + Dạng 1. Tính diện tích đa giác. + Dạng 2. Dựng tam giác có diện tích bằng diện tích của một đa giác.
Lý thuyết, các dạng toán và bài tập tứ giác
Tài liệu gồm 55 trang, tóm tắt lý thuyết, các dạng toán và bài tập tứ giác, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 1) phần Hình học chương 1. Bài 1. Tứ giác. + Dạng 1. Tính góc của tứ giác. + Dạng 2. Vẽ tứ giác. + Dạng 3. Tính độ dài. Hệ thức giữa các độ dài. Bài 2. Hình thang. + Dạng 1. Tính góc của hình thang. + Dạng 2. Nhận biết hình thang, hình thang vuông. + Dạng 3. Tính toán và chứng minh về độ dài. Bài 3. Hình thang cân. + Dạng 1. Nhận biết hình thang cân. + Dạng 2. Sử dụng tính chất hình thang cân để tính số đo góc, độ dài đường thẳng. Bài 4. Đường trung bình của tam giác, của hình thang. + Dạng 1. Sử dụng đường trung bình của tam giác để tính độ dài và chứng minh các quan hệ về độ dài. + Dạng 2. Sử dụng đường trung bình của tam giác để chứng minh hai đường thẳng song song, chứng minh ba điểm thẳng hàng, tính góc. + Dạng 3. Sử dụng đường trung bình của hình thang để tính độ dài và chứng minh các quan hệ về độ dài. + Dạng 4. Sử dụng đường trung bình của hình thang để chứng minh hai đường thẳng song song, chứng minh ba đlểm thẳng hàng, tính góc. Bài 5. Dựng hình bằng thước và compa. Dựng hình thang. + Dạng 1. Dựng tam giác. + Dạng 2. Dựng hình thang. + Dạng 3. Dựng góc có số đo đặc biệt. + Dạng 4. Dựng tứ giác, dựng điểm hay đường thẳng thoả mãn một yêu cầu nào đó. Bài 6. Đối xứng trục. + Dạng 1. Vẽ hình, nhận biết hai hình đối xứng với nhau qua một trục. + Dạng 2. Sử dụng đối xứng trục để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. + Dạng 3. Tìm trục đối xứng của một hình, hình có trục đối xứng. + Dạng 4. Dựng hình, thực hành có sử dụng đối xứng trục. Bài 7. Hình bình hành. + Dạng 1. Nhận biết hình bình hành. + Dạng 2. Sử dụng tính chất của hình bình hành để chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau. + Dạng 3. Sử dụng tính chất đường chéo hình bình hành để chứng minh ba điểm thẳng hàng, chứng minh ba đường thẳng đồng quy. + Dạng 4. Dựng hình bình hành, hoặc dựng hình có liên quan đến hình bình hành. Bài 8. Đối xứng tâm. + Dạng 1. Vẽ hình đối xứng qua một tâm. + Dạng 2. Nhận biết hai điểm đối xứng với nhau qua một tâm. Sử dụng đối xứng tâm để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. + Dạng 3. Tìm tâm đối xứng của một hình, tìm hình có tâm đối xứng. + Dạng 4. Dựng hình có sử dụng đối xứng tâm. Bài 9. Hình chữ nhật. + Dạng 1. Nhận biết hình chữ nhật. + Dạng 2. Sử dụng tính chất hình chữ nhật để chứng minh các quan hệ bằng nhau, song song, thẳng hàng, vuông góc. + Dạng 3. Tính chất đối xứng của hình chữ nhật. + Dạng 4. Áp dụng vào tam giác. + Dạng 5. Dựng hình chữ nhật. Bài 10. Đường thẳng song song với một đường thẳng cho trước. + Dạng 1. Đường thẳng song song cách đều. + Dạng 2. Chứng tỏ một điểm chuyển động trên một đường thẳng song song với một đường thẳng cho trước. + Dạng 3. Phát biểu một tập hợp điểm. Bài 11. Hình thoi. + Dạng 1. Nhận biết hình thoi. + Dạng 2. Sử dụng tính chất hình thoi để tính toán, chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau, các đường thẳng vuông góc. + Dạng 3. Tính chất đối xứng của hình thoi. + Dạng 4. Dựng hình thoi. Bài 12. Hình vuông. + Dạng 1. Nhận biết hình vuông. + Dạng 2. Sử dụng tính chất hình vuông để chứng minh các quan hệ bằng nhau, song song, thẳng hàng, vuông góc. + Dạng 3. Tìm điều kiện để một hình trở thành hình vuông. + Dạng 4. Dựng hình vuông, cắt hình vuông. Ôn tập chương I.
Lý thuyết, các dạng toán và bài tập phân thức đại số
Tài liệu gồm 42 trang, tóm tắt lý thuyết, các dạng toán và bài tập phân thức đại số, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 1) phần Đại số chương 2. Bài 1. Phân thức đại số. + Dạng 1. Chứng minh hai phân thức bằng nhau. + Dạng 2. Tìm giá trị nhỏ nhất (GTNN), giá trị lớn nhất (GTLN) của phân thức. Bài 2. Tính chất cơ bản của phân thức đại số. Bài 3. Rút gọn phân thức. + Dạng 1. Điền đa thức vào chỗ trống để có đẳng thức. + Dạng 2. Rút gọn phân thức. + Dạng 3. Chứng minh đẳng thức. + Dạng 4. Tính giá trị của biểu thức. + Dạng 5. Tìm x thỏa mãn đẳng thức cho trước. + Dạng 6. Chứng minh biểu thức không phụ thuộc vào biến. + Dạng 7. Rút gọn biểu thức có điều kiện cho trước. Bài 4. Quy đồng mẫu thức của nhiều phân thức. + Dạng 1. Tìm mẫu thức chung của nhiều phân thức. + Dạng 2. Quy đồng mẫu thức. Bài 5. Phép cộng các phân thức đại số. Bài 6. Phép trừ các phân thức đại số. + Dạng 3. Rút gọn và tính giá trị của biểu thức. + Dạng 4. Chứng minh biểu thức không phụ thuộc vào biến. + Dạng 5. Tìm x thỏa mãn đẳng thức cho trước. + Dạng 6. Áp dụng phân thức đại số vào bài toán chuyển động. + Dạng 7. Thực hiện phép tính để rút gọn phân thức. Bài 7. Phép nhân các phân thức đại số. Bài 8. Phép chia các phân thức đại số. Bài 9. Biến đổi các biểu thức hữu tỉ giá trị của phân thức. + Dạng 1. Rút gọn biểu thức. + Dạng 2. Điều kiện của x để giá trị phân thức xác định. + Dạng 3. Chứng minh biểu thức không phụ thuộc vào biến. Ôn tập chương III. A. Bài tập ôn trong SGK. B. Bài tập bổ sung.