Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề trường hợp đồng dạng thứ ba

Nội dung Chuyên đề trường hợp đồng dạng thứ ba Bản PDF - Nội dung bài viết Chuyên đề trường hợp đồng dạng thứ ba Chuyên đề trường hợp đồng dạng thứ ba Bộ tài liệu này bao gồm 15 trang, tập trung vào việc hướng dẫn học sinh về trọng tâm cần đạt trong chương trình Hình học 8 chương 3: Tam giác đồng dạng. Tài liệu cung cấp tóm tắt lý thuyết, phân loại dạng toán và hướng dẫn giải các dạng toán liên quan đến trường hợp đồng dạng thứ ba, từ cơ bản đến nâng cao. Phần I: TÓM TẮT LÝ THUYẾT Được trình bày một cách dễ hiểu, tóm tắt lý thuyết giúp học sinh nắm vững kiến thức chính liên quan đến đồng dạng tam giác. Phần II: BÀI TẬP VÀ CÁC DẠNG TOÁN - Dạng 1: Chứng minh đồng dạng hai tam giác bằng cách chỉ ra sự tương ứng của hai cặp góc trong hai tam giác. - Dạng 2: Sử dụng trường hợp đồng dạng thứ ba để tính độ dài các cạnh hoặc chứng minh các hệ thức/góc bằng nhau trong tam giác. Các phương pháp giải được trình bày chi tiết, giúp học sinh hiểu rõ cách áp dụng trường hợp đồng dạng thứ ba trong giải bài tập một cách chính xác. Bên cạnh đó, tài liệu còn tuyển chọn các bài tập từ dễ đến khó, đồng thời cung cấp đáp án và lời giải chi tiết để hỗ trợ học sinh trong quá trình ôn tập và học tập. Đây sẽ là nguồn tư liệu hữu ích giúp học sinh nắm vững kiến thức về trường hợp đồng dạng thứ ba trong Hình học 8 chương 3.

Nguồn: sytu.vn

Đọc Sách

Đề cương giữa học kì 2 Toán 8 năm 2023 - 2024 trường THCS Song Mai - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương hướng dẫn ôn tập giữa học kì 2 môn Toán 8 năm học 2023 – 2024 trường THCS Song Mai, tỉnh Bắc Giang. A. LÝ THUYẾT I. Đại số. 1. Phân thức đại số. 2. Tính chất cơ bản của phân thức đại số. 3. Phép cộng, phép trừ, phép nhân và phép chia phân thức đại số. II. Hình học. 1. Định lí Thàles trong tam giác. 2. Đường trung bình của tam giác. 3. Tính chất đường phân giác trong tam giác. 4. Tam giác đồng dạng. (Ôn theo lý thuyết được ghi trong vở và SGK). B. CÂU HỎI VÀ BÀI TẬP CƠ BẢN
Đề cương giữa kì 2 Toán 8 năm 2023 - 2024 trường THCS Long Toàn - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập giữa học kì 2 môn Toán 8 năm học 2023 – 2024 trường THCS Long Toàn, tỉnh Bà Rịa – Vũng Tàu. A. CÁC KIẾN THỨC TRỌNG TÂM 1. ĐẠI SỐ. – Tính giá trị của hàm số khi biết giá trị của biến. – Đồ thị của hàm số bậc nhất y = ax + b (a khác 0). – Hệ số góc của đường thẳng y = ax + b (a khác 0). – Giải phương trình bậc nhất một ẩn. 2. XÁC SUẤT THỐNG KÊ. – Mô tả xác suất bằng tỉ số. – Xác suất thực nghiệm – Xác suất lí thuyết. B. CÁC ĐỀ THAM KHẢO
Đề cương giữa kỳ 2 Toán 8 năm 2023 - 2024 trường THCS Thăng Long - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập giữa học kỳ 2 môn Toán 8 năm học 2023 – 2024 trường THCS Thăng Long, quận Ba Đình, thành phố Hà Nội. A. NỘI DUNG 1. Phân thức đại số, phân thức bằng nhau, điều kiện xác định của phân một phân thức, giá trị của phân thức, tính chất cơ bản của phân thức đại số. 2. Các phép biến đổi, phép tính về phân thức đại số như: Rút gọn phân thức đại số, quy đồng mẫu nhiều phân thức, cộng, trừ, nhân, chia phân thức đại số. 3. Phương trình bậc nhất một ẩn, phương trình đưa được về dạng ax + b = 0 và cách giải, giải bài toán bằng cách lập phương trình. 4. Hai tam giác đồng dạng, ba trường hợp đồng dạng của hai tam giác, định lí Pythagore. B. MỘT SỐ BÀI TẬP THAM KHẢO
Đề cương giữa kì 2 Toán 8 năm 2023 - 2024 trường THCS Lê Lợi - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập giữa học kì 2 môn Toán 8 năm học 2023 – 2024 trường THCS Lê Lợi, quận Hà Đông, thành phố Hà Nội. A – KIẾN THỨC TRỌNG TÂM I. ĐẠI SỐ: Phân thức đại số; Tính chất cơ bản của phân thức đại số; Phép cộng, trừ, nhân, chia phân thức đại số; Phương trình bậc nhất một ẩn và ứng dụng. II. HÌNH HỌC: Ba trường hợp đồng dạng của hai tam giác; Định lý Pythagore và ứng dụng. B – BÀI TẬP I. TRẮC NGHIỆM. I. PHẦN TỰ LUẬN. + Dạng 1. Thực hiện phép tính. + Dạng 2. Giải phương trình. + Dạng 3. Rút gọn biểu thức hữu tỉ và câu hỏi liên quan. + Dạng 4. Toán thực tế. + Dạng 5. Hình học tổng hợp. + Dạng 6. Toán nâng cao.