Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG lớp 7 môn Toán năm 2022 2023 trường THCS Cành Nàng Thanh Hóa

Nội dung Đề khảo sát HSG lớp 7 môn Toán năm 2022 2023 trường THCS Cành Nàng Thanh Hóa Bản PDF - Nội dung bài viết Đề khảo sát Học sinh giỏi Toán lớp 7 năm 2022 - 2023 THCS Cành Nàng Thanh Hóa Đề khảo sát Học sinh giỏi Toán lớp 7 năm 2022 - 2023 THCS Cành Nàng Thanh Hóa Chào mừng đến với đề thi khảo sát chọn đội tuyển học sinh giỏi môn Toán lớp 7 năm học 2022 - 2023 của trường THCS Cành Nàng, Thanh Hóa. Đề thi này sẽ giúp các em học sinh lớp 7 ôn tập và kiểm tra kiến thức của mình để chuẩn bị cho cuộc thi sắc đẹp trong tương lai. Đề thi bao gồm các câu hỏi chất lượng, có đáp án và lời giải chi tiết để giúp các em hiểu rõ từng bước giải của bài toán. Dưới đây là một số ví dụ về các câu hỏi trong đề khảo sát: 1. Số A được chia thành 3 số tỉ lệ theo 2 : 3 : 1. Biết rằng tổng các bình phương của ba số đó bằng 24309. Hãy tìm số A. 2. Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Hãy chứng minh rằng: a) AC = EB và AC // BE. b) I là một điểm trên AC; K là một điểm trên EB sao cho AI = EK. Chứng minh ba điểm I, M, K thẳng hàng. c) Từ E kẻ EH // BC (H BC). Biết HBE = 50o; MEB = 25o. Tính số đo HEM và BME. 3. Chứng minh rằng nếu 2n + 1 và 3n + 1 (với n là số nguyên dương) đều là các số chính phương thì n chia hết cho 40. Hy vọng rằng đề thi này sẽ giúp các em học sinh lớp 7 rèn luyện và phát triển kỹ năng Toán của mình. Chúc các em thành công trong việc học tập và thi cử!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 7 năm 2018 - 2019 phòng GDĐT Nậm Nhùn - Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2018 – 2019 phòng GD&ĐT Nậm Nhùn – Lai Châu; kỳ thi được diễn ra vào ngày 13 tháng 01 năm 2019.
Đề khảo sát chọn HSG Toán 7 năm 2018 - 2019 phòng GDĐT Xuân Trường - Nam Định
Đề khảo sát chọn HSG Toán 7 năm 2018 – 2019 phòng GD&ĐT Xuân Trường – Nam Định gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút, đề thi nhằm tuyển chọn các em học sinh giỏi môn Toán lớp 7 đang học tập tại các trường THCS trên địa bàn huyện Xuân Trường, tỉnh Nam Định để tuyên dương, khen thưởng, đồng thời thành lập đội tuyển học sinh giỏi Toán 7 để tham dự kỳ thi học sinh Toán 7 cấp tỉnh, đề thi có lời giải chi tiết.
Đề giao lưu học sinh giỏi Toán 7 năm 2018 - 2019 phòng GDĐT thành phố Thái Nguyên
Đề giao lưu học sinh giỏi Toán 7 năm 2018 – 2019 phòng GD&ĐT thành phố Thái Nguyên gồm 03 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút.
Đề giao lưu HSG Toán 7 năm 2017 - 2018 phòng GDĐT Tam Dương - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT Tam Dương – Vĩnh Phúc; đề thi có đáp án + lời giải + thang điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT Tam Dương – Vĩnh Phúc : + Cho góc xOy bằng 600. Tia Oz là phân giác của góc xOy. Từ điểm B bất kì trên tia Ox kẻ BH, BK lần lượt vuông góc với Oy, Oz tại H và K. Qua B kẻ đường song song với Oy cắt Oz tại M. Chứng minh rằng BH = MK. + Cho tam giác ABC vuông cân tại A. Điểm M nằm bên trong tam giác sao cho MA = 2cm, MB = 3cm và AMC = 135 độ. Tính MC. + Từ 200 số tự nhiên 1; 2; 3;…; 200, ta lấy ra k số bất kì sao cho trong các số vừa lấy luôn tìm được 2 số mà số này là bội của số kia. Tìm giá trị nhỏ nhất của k.