Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề ôn tập cuối học kì 1 (HK1) lớp 11 môn Toán năm 2021 2022 trường Thuận Thành 1 Bắc Ninh

Nội dung Đề ôn tập cuối học kì 1 (HK1) lớp 11 môn Toán năm 2021 2022 trường Thuận Thành 1 Bắc Ninh Bản PDF Nhằm giúp các em học sinh lớp 11 rèn luyện để chuẩn bị cho kỳ thi kiểm tra chất lượng cuối học kì 1 môn Toán lớp 11 sắp tới, Sytu giới thiệu đến các em đề ôn tập cuối học kỳ 1 Toán lớp 11 năm 2021 – 2022 trường Thuận Thành 1 – Bắc Ninh. Trích dẫn đề ôn tập cuối học kỳ 1 Toán lớp 11 năm 2021 – 2022 trường Thuận Thành 1 – Bắc Ninh : + Phát biểu nào sau đây đúng? A. Hai đường thẳng song song nhau nếu chúng đồng phẳng. B. Hai đường thẳng chéo nhau nếu chúng đồng phẳng. C. Hai đường thẳng cắt nhau nếu chúng không đồng phẳng. D. Hai đường song song nếu chúng đồng phẳng và không có điểm chung. + Một bộ đề thi toán học sinh giỏi lớp 11 mà mỗi đề gồm 5 câu được chọn từ 15 câu dễ, 10 câu trung bình và 5 câu khó. Một đề thi được gọi là TỐT nếu trong đề thi có cả ba câu dễ, trung bình và khó, đồng thời số câu dễ không ít hơn 2 . Lấy ngẫu nhiên một đề thi trong bộ đề trên. Tìm xác suất để đề thi lấy ra là một đề thi TỐT. + Cho tập X = {0;1;2 … 8;9}. Hỏi có thể lập được bao nhiêu số tự nhiên có 4 chữ số từ tập X sao cho trong mỗi số đó, chữ số hàng ngàn lớn hơn chữ số hàng trăm, chữ số hàng trăm lớn hơn chữ số hàng chục và chữ số hàng chục lớn hơn chữ số hàng đơn vị. + Cho hình thoi ABCD tâm O. Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng? A. Phép vị tự tâm O, tỷ số k 1 biến tam giác ABD thành tam giác CDB. B. Phép tịnh tiến theo vectơ AD biến tam giác ABD thành tam giác DCB. C. Phép quay tâm O, góc 2 biến tam giác OBC thành tam giác OCD. D. Phép vị tự tâm O, tỷ số k = 1 biến tam giác OBC thành tam giác ODA. + Dùng quy nạp chứng minh mệnh đề chứa biến A n đúng với mọi số tự nhiên n p (p là một số tự nhiên). Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với n bằng?

Nguồn: sytu.vn

Đọc Sách

Phiếu khảo bài môn Toán 11 học kì 1 - Lê Văn Đoàn
Tài liệu gồm 77 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, tuyển tập phiếu khảo bài môn Toán 11 học kì 1. ĐẠI SỐ & GIẢI TÍCH 11 Phiếu 1.1. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 1. Phiếu 1.2. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 3. Phiếu 2.1. Phương trình lượng giác cơ bản 5. Phiếu 2.2. Phương trình lượng giác cơ bản 7. Phiếu 3.1. Phương trình bậc hai theo một hàm số lượng giác 9. Phiếu 3.2. Phương trình bậc hai theo một hàm số lượng giác 11. Phiếu 4.1. Phương trình bậc nhất đối với sin và cosin (cổ điển) 13. Phiếu 4.2. Phương trình bậc nhất đối với sin và cosin (cổ điển) 15. Phiếu 5.1. Phương trình lượng giác đẳng cấp 17. Phiếu 5.2. Phương trình lượng giác đẳng cấp 19. Phiếu 6.1. Phương trình lượng giác đối xứng 21. Phiếu 6.2. Phương trình lượng giác đối xứng 23. Phiếu 7.1. Quy tắc đếm cơ bản 25. Phiếu 7.2. Quy tắc đếm cơ bản 27. Phiếu 8.1. Hoán vị, tổ hợp, chỉnh hợp 29. Phiếu 8.2. Hoán vị, tổ hợp, chỉnh hợp 31. Phiếu 8.3. Hoán vị, tổ hợp, chỉnh hợp 33. Phiếu 9.1. Nhị thức Newton 35. Phiếu 9.2. Nhị thức Newton 37. Phiếu 9.3. Nhị thức Newton 39. Phiếu 10.1. Xác suất 41. Phiếu 10.2. Xác suất 43. Phiếu 10.3. Xác suất 45. Phiếu 11.1. Cấp số cộng – Cấp số nhân 47. Phiếu 11.2. Cấp số cộng – Cấp số nhân 49. Phiếu 11.2. Cấp số cộng – Cấp số nhân 51. HÌNH HỌC 11 Phiếu 1.1. Tìm giao tuyến và giao điểm 53. Phiếu 1.2. Tìm giao tuyến và giao điểm 55. Phiếu 1.3. Tìm giao tuyến và giao điểm 57. Phiếu 2.1. Tìm thiết diện 59. Phiếu 2.2. Tìm thiết diện 60. Phiếu 3.1. Chứng minh ba điểm thẳng hàng 61. Phiếu 3.2. Chứng minh ba điểm thẳng hàng 62. Phiếu 4.1. Chứng minh hai đường thẳng song song 63. Phiếu 4.2. Chứng minh hai đường thẳng song song 64. Phiếu 5.1. Tìm giao tuyến song song 65. Phiếu 5.2. Tìm giao tuyến song song 67. Phiếu 6.1. Chứng minh đường thẳng song song với mặt phẳng 69. Phiếu 6.2. Chứng minh đường thẳng song song với mặt phẳng 71. Phiếu 7.1. Chứng minh mặt phẳng song song với mặt phẳng 73. Phiếu 7.2. Chứng minh mặt phẳng song song với mặt phẳng 75.