Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

50 chuyên đề phát triển bám sát đề tham khảo TN THPT 2024 môn Toán

Tài liệu gồm 438 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, tuyển tập 50 chuyên đề phát triển bám sát đề tham khảo tốt nghiệp THPT năm 2024 môn Toán. MỤC LỤC : Dạng 1: Tìm giá trị cực đại, cực tiểu của hàm số thông qua bảng biến thiên. Dạng 2: Tìm nguyên hàm của hàm số cơ bản. Dạng 3: Tìm tập nghiệm của phương trình logarit cơ bản. Dạng 4: Tìm tọa độ vectơ đơn giản khi biết tọa độ điểm. Dạng 5: Tìm tiệm cận ngang của đồ thị hàm số hữu tỷ b1/b1. Dạng 6: Tìm hàm số khi biết bảng biến thiên. Dạng 8: Tìm vectơ chỉ phương của đường thẳng. Dạng 9: Tìm số phức khi biết điểm biểu diễn trên mp tọa độ. Dạng 10: Tìm phương trình mặt cầu khi biết tọa độ tâm và bán kính cụ thể. Dạng 11: Thu gọn biểu thức logarit cho trước. Dạng 12: Tìm khoảng đồng biến, nghịch biến của hàm số khi biết đồ thị hàm số. Dạng 13: Tìm thể tích khối lăng trụ khi biết diện tích đáy và chiều cao. Dạng 14: Tìm tập nghiệm của BPT mũ cơ bản. Dạng 15: Xét sự biến thiên của hàm số mũ và logarit. Dạng 16: Tìm tọa độ vectơ pháp tuyến của mặt phẳng cơ bản cho trước. Dạng 17: Tìm điểm cực trị của hàm số khi biết đạo hàm y’. Dạng 18: Tính tích phân của hàm số cơ bản sử dụng tính chất. Dạng 19: Tính tích phân cơ bản sử dụng định nghĩa và tính chất. Dạng 20: Tính thể tích khối chóp khi biết diện tích đáy và chiều cao. Dạng 21: Tìm tổng hai số phức. Dạng 22: Xác định các yếu tố liên qua đến hình nón. Dạng 23: Bài toán sử dụng hoán vị, chỉnh hợp, tổ hợp cơ bản. Dạng 24: Tìm nguyên hàm của hàm số mũ cơ bản. Dạng 25: Bài toán tương giao của hai đồ thị. Dạng 26: Tìm các yếu tố liên quan đến hình trụ. Dạng 27: Tìm các yếu tố liên quan đến cấp số cộng. Dạng 28: Tìm phần thực, phần ảo của số phức đơn giản. Dạng 29: Tìm phần thực, phần ảo của số phức có liên quan đến số phức cho trước. Dạng 30: Tìm góc của hai đường thẳng (hình học không gian 11). Dạng 31: Tìm khoảng cách điểm A đến mặt phẳng (hình học không gian 11). Dạng 32: Tìm khoảng đồng biến, nghịch biến khi biết đạo hàm y’. Dạng 33: Tìm xác suất dùng định nghĩa. Dạng 34: Tính tích phân sử dụng tính chất và định nghĩa. Dạng 35: Tính GTLN – GTNN của hàm số. Dạng 36: Biến đổi biểu thức logarit. Dạng 37: Tìm phương trình mặt cầu có tâm và đi qua một điểm cho trước. Dạng 38: Viết PTĐT đi qua một điểm và song song với một đường thẳng cho trước. Dạng 39: Tính giá trị của biểu thức logarit thỏa ĐK cho trước. Dạng 40: Tìm số giá trị tham số m nguyên để hàm số đơn điệu trên khoảng cho trước. Dạng 41: Tính tích phân của hàm số khi biết diện tích hình phẳng tạo bởi các đồ thị hàm số. Dạng 42: Tìm modun của tổng hai số phức thỏa các điều kiện cho trước. Dạng 43: Tính thể tích lăng trụ biết yếu tố về góc cho trước. Dạng 44: Tìm phương trình mặt phẳng thỏa mãn các điều kiện cho trước. Dạng 45: Tính thể tích khối trụ – ứng dụng thực tế. Dạng 46: Tìm GTLN – GTNN của hàm số logarit. Dạng 47: Tìm GTLN – GTNN của modun tổng, hiệu các số phức thỏa ĐK cho trước. Dạng 48: Tính thể tích của vật thể (ứng dụng tích phân vào thực tế). Dạng 49: Tìm giá trị nguyên của tham số m liên qua đến đạo hàm và hàm số hợp. Dạng 50: Bài toán liên quan đến ứng dụng để tìm cực trị hình học trong KG Oxyz.

Nguồn: toanmath.com

Đọc Sách

Bài toán thực tế và bài toán tối ưu min - max - Lê Viết Nhơn
Tài liệu gồm 23 trang tuyển chọn các bài toán thực tế và bài toán tối ưu min – max do thầy Lê Viết Nhơn sưu tầm và biên soạn, với nội dung gồm các phần: + Phần 1. Bài toán thực tế tối ưu+ Phần 2. Các bài toán thực tế liên quan đến tích phân + Phần 3. Bài toán thực tế liên quan đến mũ và lôgarit + Phần 4. Bài tập rèn luyện trích từ đề thi thử các trường THPT [ads] Trích dẫn tài liệu : + Một tấm kẽm hình vuông ABCD có cạnh bằng 30 cm. Người ta gập tấm kẽm theo hai cạnh EF và GH cho đến khi AD và BC trùng nhau như hình vẽ dưới đây để được một hình lăng trụ khuyết hai đáy. + Cho một tam giác đều ABC cạnh a. Người ta dựng một hình chữ nhật MNPQ có cạnh MN nằm trên cạnh BC, hai đỉnh P và Q theo thứ tự nằm trên hai cạnh AC và AB của tam giác. Xác định vị trí của điểm M sao cho hình chữ nhật có diện tích lớn nhất và tìm giá trị lớn nhất đó. + Khi nuôi cá thí nghiệm trong hồ, một nhà sinh vật học thấy rằng: Nếu trên mỗi đơn vị diện tích mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ cân nặng P(n) = 480 – 20n gam. Hỏi phải thả bao nhiêu cá trên một đơn vị diện tích của mặt hồ để sau một vụ thu hoạch được nhiều cá nhất?
Hướng dẫn ôn tập kỳ thi THPT Quốc gia 2016 - 2017 môn Toán - Đoàn Quỳnh
Sách gồm 246 trang với 2 phần: + Phần 1. Ôn tập theo chủ đề. Phần này ôn lại những kiến thức, kỹ năng cần thiết cùng một số câu trắc nghiệm theo 7 chủ đề chương trình Toán 12. + Phần 2. Một số đề tự luyện, đưa ra 9 đề, được biên soạn phỏng theo đề minh họa của Bộ GD và ĐT đã được công bố. Sách do Nhà xuất bản Giáo dục Việt Nam phát hành. [ads]
Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán - Trần Công Diêu
Sách gồm 449 trang với 11 chuyên đề: + Chuyên đề 1. Ứng dụng đạo hàm + Chuyên đề 2. Hàm số lũy thừa, mũ và logarit + Chuyên đề 3. Nguyên hàm, tích phân và ứng dụng + Chuyên đề 4. Số phức + Chuyên đề 5. Hình học không gian + Chuyên đề 6. Phương pháp tọa độ trong không gian + Chuyên đề 7. Lượng giác + Chuyên đề 8. Đại số tổ hợp và xác suất + Chuyên đề 9. Giới hạn, liên tục + Chuyên đề 10. Hình học Oxy + Chuyên đề 11. Phương trình, bất phương trình đại số [ads]
131 bài toán ứng dụng thực tiễn có lời giải chi tiết - Trần Văn Tài
Tài liệu gồm 74 trang với 131 bài toán ứng dụng thực tiễn thường gặp do thầy Trần Văn Tài biên soạn. Các bài toán đều có lời giải chi tiết. Trích một số phần trong tài liệu: 1. Đường dây điện 110KV kéo từ trạm phát (điểm A) trong đất liền ra Côn Đảo (điểm C). biết khoảng cách ngắn nhất từ C đến B là 60km, khoảng cách từ A đến B là 100km, mỗi km dây điện dưới nước chi phí là 5000 USD, chi phí cho mỗi km dây điện trên bờ là 3000 USD. Hỏi điểm G cách A bao nhiêu để mắc dây điện từ A đến G rồi từ G đến C chi phí ít nhất. [ads] 2. Cho một tấm nhôm hình vuông cạnh 6 cm. Người ta muốn cắt một hình thang như hình vẽ. Tìm tổng x + y để diện tích hình thang EFGH đạt giá trị nhỏ nhất. 3. Nhân ngày phụ nữ Việt Nam 20 -10 năm 2017 , ông A quyết định mua tặng vợ một món quà và đặt nó vào trong một chiếc hộp có thể tích là 32 (đvtt) có đáy hình vuông và không có nắp . Để món quà trở nên thật đặc biệt và xứng đáng với giá trị của nó ông quyết định mạ vàng cho chiếc hộp , biết rằng độ dạy lớp mạ tại mọi điểm trên hộp là như nhau . Gọi chiều cao và cạnh đáy của chiếc hộp lần lượt là h; x. Để lượng vàng trên hộp là nhỏ nhất thì giá trị của h; x phải là ?