Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phép cộng các phân thức đại số

Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phép cộng các phân thức đại số, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT 1. Quy tắc cộng hai phân thức cùng mẫu thức: Muốn cộng hai phân thức có cùng mẫu thức, ta cộng các tử thức với nhau và giữ nguyên mẫu thức. 2. Quy tắc cộng hai phân thức có mẫu thức khác nhau: Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Cộng xác phân thức đại số thông thường. Sử dụng kết hợp hai quy tắc cộng phân thức đại số. Dạng 2 . Cộng các phân thức đại số có sử dụng quy tắc đối dấu. + Bước 1. Áp dụng quy tắc đổi dấu phân thức: A/B = -A/-B. + Bước 2. Thực hiện tương tự dạng 1. Dạng 3 . Tính giá trị biểu thức tổng các phân thức đại số. + Bước 1. Thực hiện phép cộng các phân thức đại số tương tự dạng 1 và dạng 2. + Bước 2.Thay giá trị của biến vào phân thức và tính. Dạng 4 . Giải toán đố có sử dụng phép cộng các phân thức đại số. + Bước 1. Thiết lập các biểu thức theo yêu cầu của đề bài. + Bước 2. Sử dụng kết hợp hai quy tắc cộng phân thức đại số đã nêu trong phần tóm tắt lý thuyết.

Nguồn: toanmath.com

Đọc Sách

Đề cương giữa học kì 2 Toán 8 năm 2023 - 2024 trường THCS Song Mai - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương hướng dẫn ôn tập giữa học kì 2 môn Toán 8 năm học 2023 – 2024 trường THCS Song Mai, tỉnh Bắc Giang. A. LÝ THUYẾT I. Đại số. 1. Phân thức đại số. 2. Tính chất cơ bản của phân thức đại số. 3. Phép cộng, phép trừ, phép nhân và phép chia phân thức đại số. II. Hình học. 1. Định lí Thàles trong tam giác. 2. Đường trung bình của tam giác. 3. Tính chất đường phân giác trong tam giác. 4. Tam giác đồng dạng. (Ôn theo lý thuyết được ghi trong vở và SGK). B. CÂU HỎI VÀ BÀI TẬP CƠ BẢN
Đề cương giữa kì 2 Toán 8 năm 2023 - 2024 trường THCS Long Toàn - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập giữa học kì 2 môn Toán 8 năm học 2023 – 2024 trường THCS Long Toàn, tỉnh Bà Rịa – Vũng Tàu. A. CÁC KIẾN THỨC TRỌNG TÂM 1. ĐẠI SỐ. – Tính giá trị của hàm số khi biết giá trị của biến. – Đồ thị của hàm số bậc nhất y = ax + b (a khác 0). – Hệ số góc của đường thẳng y = ax + b (a khác 0). – Giải phương trình bậc nhất một ẩn. 2. XÁC SUẤT THỐNG KÊ. – Mô tả xác suất bằng tỉ số. – Xác suất thực nghiệm – Xác suất lí thuyết. B. CÁC ĐỀ THAM KHẢO
Đề cương giữa kỳ 2 Toán 8 năm 2023 - 2024 trường THCS Thăng Long - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập giữa học kỳ 2 môn Toán 8 năm học 2023 – 2024 trường THCS Thăng Long, quận Ba Đình, thành phố Hà Nội. A. NỘI DUNG 1. Phân thức đại số, phân thức bằng nhau, điều kiện xác định của phân một phân thức, giá trị của phân thức, tính chất cơ bản của phân thức đại số. 2. Các phép biến đổi, phép tính về phân thức đại số như: Rút gọn phân thức đại số, quy đồng mẫu nhiều phân thức, cộng, trừ, nhân, chia phân thức đại số. 3. Phương trình bậc nhất một ẩn, phương trình đưa được về dạng ax + b = 0 và cách giải, giải bài toán bằng cách lập phương trình. 4. Hai tam giác đồng dạng, ba trường hợp đồng dạng của hai tam giác, định lí Pythagore. B. MỘT SỐ BÀI TẬP THAM KHẢO
Đề cương giữa kì 2 Toán 8 năm 2023 - 2024 trường THCS Lê Lợi - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập giữa học kì 2 môn Toán 8 năm học 2023 – 2024 trường THCS Lê Lợi, quận Hà Đông, thành phố Hà Nội. A – KIẾN THỨC TRỌNG TÂM I. ĐẠI SỐ: Phân thức đại số; Tính chất cơ bản của phân thức đại số; Phép cộng, trừ, nhân, chia phân thức đại số; Phương trình bậc nhất một ẩn và ứng dụng. II. HÌNH HỌC: Ba trường hợp đồng dạng của hai tam giác; Định lý Pythagore và ứng dụng. B – BÀI TẬP I. TRẮC NGHIỆM. I. PHẦN TỰ LUẬN. + Dạng 1. Thực hiện phép tính. + Dạng 2. Giải phương trình. + Dạng 3. Rút gọn biểu thức hữu tỉ và câu hỏi liên quan. + Dạng 4. Toán thực tế. + Dạng 5. Hình học tổng hợp. + Dạng 6. Toán nâng cao.