Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn HSG lớp 11 môn Toán vòng 1 năm 2020 2021 trường THPT Trần Nguyên Hãn Hải Phòng

Nội dung Đề chọn HSG lớp 11 môn Toán vòng 1 năm 2020 2021 trường THPT Trần Nguyên Hãn Hải Phòng Bản PDF Đề chọn HSG Toán lớp 11 vòng 1 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 06 bài toán, thời gian học sinh làm bài thi là 180 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề chọn HSG Toán lớp 11 vòng 1 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng : + Trong mặt phẳng Oxy, cho hình bình hành ABCD, hình chiếu của điểm D lên AB, BC lần lượt là M(-2;2), N(2;-2). Biết rằng đường thẳng DB có phương trình là 3x – 5y + 1 = 0 và hoành độ điểm B lớn hơn 0. Tìm tọa độ điểm B. + Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8; 9 lập được bao nhiêu số có 4 chữ số đôi một khác nhau và chia hết cho 11 đồng thời tổng của 4 chữ số của nó cũng chia hết cho 11. + Cho hình chóp S.ABCD, đáy ABCD là hình bình hành, M là trung điểm của SA và E là trung điểm của SB; P thuộc cạnh SC sao cho SC = 3SP. 1) Dựng giao điểm của DB với mặt phẳng (MPE). 2) Gọi N là một điểm thuộc cạnh SB, mặt phẳng (MNP) cắt SD tại Q. Chứng minh SB/SN + SD/SQ = 5. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 11 cấp tỉnh năm học 2017 - 2018 sở GD và ĐT Thanh Hóa
Đề thi chọn HSG Toán 11 cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Thanh Hóa gồm 1 trang với 5 bài toán tự luận, thang điểm 20, thời gian làm bài 180 phút (không kể thời gian giao đề), kỳ thi được tổ chức vào ngày 09 tháng 3 năm 2018, đề thi HSG Toán 11 có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 11 : + Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành. Một điểm M di động trên cạnh đáy BC (M khác B, C). Mặt phẳng (α) đi qua M đồng thời song song với hai đường thẳng SB và AC. Xác định thiết diện của hình chóp S.ABCD cắt bởi (α) và tìm vị trí của điểm M để thiết diện đó có diện tích lớn nhất. + Xếp ngẫu nhiên 10 học sinh gồm 2 học sinh của lớp 11A, 3 học sinh của lớp 11B và 5 học sinh của lớp 11C thành một hàng ngang. Tính xác suất để không có học sinh của cùng một lớp đứng cạnh nhau. [ads] + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông cân tại A. Các điểm M, N lần lượt thuộc các cạnh AB, AC sao cho AM = AN (M, N không trùng với các đỉnh của tam giác). Đường thẳng d1 đi qua A và vuông góc với BN cắt cạnh BC tại H(6/5; -2/3), đường thẳng d2 đi qua M và vuông góc với BN cắt cạnh BC tại K(2/5; 2/3). Tìm tọa độ các đỉnh của tam giác ABC, biết rằng đỉnh A thuộc đường thẳng Δ: 5x + 3y + 13 = 0 và có hoành độ dương.
Đề thi học sinh giỏi Toán 11 cấp tỉnh năm 2017 - 2018 sở GDĐT Lai Châu
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán 11 cấp tỉnh năm học 2017 – 2018 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 11 cấp tỉnh năm 2017 – 2018 sở GD&ĐT Lai Châu : + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật và SA vuông góc với mặt phẳng (ABCD). Biết AB a BC a 3 và SD a 5. Đường thẳng qua A vuông góc với AC cắt các đường thẳng CB CD lần lượt tại I J. Gọi H là hình chiếu vuông góc của A trên SC. Gọi K L là giao điểm của SB SD với (HIJ) a. Chứng minh rằng AK SBC. b. Tính khoảng cách từ điểm B đến (HIJ). + Trên một đường thẳng có n điểm màu xanh và n điểm màu đỏ. Chứng minh rằng tổng tất cả các khoảng cách giữa các cặp điểm cùng màu bé hơn hoặc bằng tổng tất cả các khoảng cách giữa các cặp điểm khác màu. + Cho dãy số (un) xác định bởi 1 n u và 2 1 1 n n n u u với n = 1, 2, 3 … Tính giới hạn lim n n u +∞.
Đề thi chọn học sinh giỏi tỉnh môn Toán 11 năm học 2016 - 2017 sở GD và ĐT Hà Tĩnh
Đề thi chọn học sinh giỏi tỉnh cấp THPT môn Toán lớp 11 năm học 2016 – 2017 sở GD và ĐT Hà Tĩnh gồm 5 bài toán tự luận. Nội dung đề gồm các phần: lượng giác, xác suất, giới hạn, hình học không gian, min – max và dãy số. Đề thi có lời giải chi tiết và thang điểm.