Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bộ câu hỏi ôn tập chuyên đề ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Tài liệu gồm 34 trang với các nội dung ôn tập thuộc chuyên đề ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số. 1. Nội dung ôn tập Ôn tập các vấn đề cơ bản sau: + Sự đồng biến, nghịch biến của hàm số + Cực trị của hàm số + Giá trị lớn nhất, giá trị nhỏ nhất của hàm số + Đường tiệm cận [ads] 2. Phương pháp – Thống kê lại lý thuyết, giao bài tập trắc nghiệm theo các mức độ phù hợp với đối tượng học sinh – Hướng dẫn một số thao tác làm nhanh bài tập trắc nghiệm 3. Mức độ kiến thức cần đạt + Chỉ ra được các khoảng đồng biến và nghịch biến của đồ thị hàm số + Tìm được các điểm cực trị của hàm số +Tìm được GTLN, GTNN của hàm số theo yêu cầu + Chỉ ra được các đường tiệm cận của hàm số + Nhận dạng được đồ thị các hàm số đã học thông qua hàm số và ngược lại

Nguồn: toanmath.com

Đọc Sách

Sử dụng phương pháp đạo hàm để tìm GTLN - GTNN
Tài liệu gồm 48 trang với các dạng toán: + Dạng 1: Tìm min – max bằng cách đạo hàm trực tiếp + Dạng 2: Đặt ẩn phụ sau đo dùng đạo hàm + Dạng 3: Dùng phép thế rồi đạo hàm + Dạng 4: Dồn về một biến bằng cách chặn trên hoặc chặn dưới + Dạng 5: Dùng phép lượng giác hóa kết hợp với đạo hàm
Giá trị lớn nhất - nhỏ nhất của hàm nhiều biến - Trần Phương
Các phương pháp thường sử dụng: + Phương pháp 1: Biến đổi thành tổng các bình phương + Phương pháp 2: Tam thức bậc hai. + Phương pháp 3: Sử dụng bất đẳng thức cổ điển: Côsi; Bunhiacôpski + Phương pháp 4: Sử dụng đạo hàm. + Phương pháp 5: Sử dụng đổi biến lượng giác. + Phương pháp 6: Sử dụng phương pháp véctơ và hệ tọa độ + Phương pháp 7: Sử dụng phương pháp hình học và hệ tọa độ.
172 câu trắc nghiệm cực trị hàm số được phân dạng theo mức độ - Phạm Văn Huy
Tài liệu gồm 52 trang với các bài toán trắc nghiệm cực trị hàm số được phân dạng theo mức độ có đáp án và lời giải chi tiết. + Dạng 1: Cực trị và các yếu tố của cực trị ( Mức độ thông hiểu) + Dạng 2: Tìm m để hàm số có cực trị hoặc đạt cực trị tại x0 (Mức độ vận dụng thấp)+ Dạng 3: Tìm m để hàm số có cực trị thỏa mãn điều kiện cho trước (Mức độ vận dụng cao) [ads]
Phân loại câu hỏi chuyên đề khảo sát hàm số và mũ - logarit - Lê Minh Cường
Tài liệu gồm 90 trang với 707 bài toán trắc nghiệm có đáp án thuộc các chuyên đề khảo sát hàm số và hàm số lũy thừa – mũ – logarit. Khảo sát hàm số 1.1 Đơn điệu 1.2 Cực trị 1.3 Min-Max 1.4 Tiệm cận 1.5 Đồ thị – Tương giao 1.6 Tiếp tuyến [ads] Hàm số lũy thừa – mũ – lôgarit 2.1 Hàm số lũy thừa 2.2 Công thức lôgarit 2.3 Hàm số mũ – lôgarit 2.4 Phương trình mũ – lôgarit 2.5 Bất phương trình mũ – lôgarit Các bài toán được phân loại theo mức độ nhận biết, thông hiểu, vận dụng thấp và vận dụng cao.