Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề lũy thừa của một số hữu tỉ

Nội dung Chuyên đề lũy thừa của một số hữu tỉ Bản PDF - Nội dung bài viết Chuyên đề lũy thừa của một số hữu tỉ Chuyên đề lũy thừa của một số hữu tỉ Tài liệu này bao gồm 14 trang, cung cấp kiến thức lý thuyết, các dạng toán và bài tập về chuyên đề lũy thừa của một số hữu tỉ. Tài liệu có đầy đủ đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập môn Toán, phần Đại số chương 1: Số hữu tỉ và số thực. Mục tiêu của tài liệu: Kiến thức: Nắm được định nghĩa về lũy thừa với số mũ tự nhiên. Hiểu và áp dụng đúng các quy tắc phép tính lũy thừa. Mở rộng kiến thức về lũy thừa với số mũ nguyên âm và những tính chất liên quan. Kỹ năng: Tính toán được lũy thừa với các số hữu tỉ và số mũ tự nhiên cụ thể. Sử dụng công thức phép tính lũy thừa để thực hiện phép tính và rút gọn biểu thức. Áp dụng kiến thức về lũy thừa để đưa các lũy thừa về cùng cơ số hoặc cùng số mũ, so sánh và giải các bài toán có liên quan. Sử dụng các tính chất của lũy thừa để tìm số mũ hoặc cơ số của một lũy thừa. Nội dung tài liệu: I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP: Dạng 1: Tính lũy thừa của một số hữu tỉ. Dạng 2: Viết số dưới dạng lũy thừa của một số hữu tỉ. Dạng 3: Thực hiện các phép tính lũy thừa. Dạng 4: So sánh các lũy thừa. Dạng 5: Tìm số mũ, cơ số của lũy thừa. Bài Toán lớp 1: Tìm số mũ của lũy thừa. Bài Toán lớp 2: Tìm cơ số của lũy thừa. Thông qua tài liệu này, học sinh sẽ hiểu rõ hơn về lũy thừa, các quy tắc phép tính liên quan và biết cách áp dụng kiến thức vào việc giải các bài tập thực hành. Đồng thời, giúp nâng cao kỹ năng tính toán và logic của học sinh trong quá trình học Toán. Học sinh lớp 7 hãy cùng tham gia và thực hành để nắm vững chuyên đề này nhé!

Nguồn: sytu.vn

Đọc Sách

Chuyên đề tổng các góc trong một tam giác Toán 7
Tài liệu gồm 22 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề tổng các góc trong một tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Tính số đo góc của một tam giác. – Lập các đẳng thức thể hiện: + Tổng ba góc của tam giác bằng 180 độ. + Trong tam giác vuông, hai góc nhọn phụ nhau. + Góc ngoài của tam giác bằng tổng hai góc trong không kề với nó. – Sau đó tính số đo góc phải tìm. Dạng 2. Các dạng bài toán chứng minh. – Sử dụng các tính chất trong phần kiến thức cần nhớ. – Lưu ý thêm về các tính chất đã học về quan hệ song song, vuông góc, tia phân giác góc. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề định lí và chứng minh định lí Toán 7
Tài liệu gồm 19 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề định lí và chứng minh định lí trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. 1. Định lí. Giả thiết và kết luận của định lí: – Định lí là một khẳng định được suy ra từ những khẳng định đúng đã biết. Mỗi định lí thường được phát biểu dưới dạng: “Nếu … thì …”. – Phần giữa từ “nếu” và từ “thì” là giả thiết của định lí. – Phần sau từ “thì” là kết luận của định lí. 2. Thế nào là chứng minh định lí? – Chứng minh một định lí là dùng lập luận để từ giả thiết và những khẳng định đúng đã biết để suy ra kết luận của định lí. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Xác định giả thiết và kết luận của định lí. – Mỗi định lí thường được phát biểu dưới dạng: “Nếu … thì …”. – Phần giữa từ “nếu” và từ “thì” là giả thiết của định lí. – Phần sau từ “thì” là kết luận của định lí. Dạng 2. Chứng minh định lí. – Chứng minh một định lí là dùng lập luận để từ giả thiết và những khẳng định đúng đã biết để suy ra kết luận của định lí. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề tiên đề Euclid, tính chất của hai đường thẳng song song Toán 7
Tài liệu gồm 40 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề tiên đề Euclid, tính chất của hai đường thẳng song song trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Tính số đo góc. + Dựa vào tính chất hai đường thẳng song song. Nếu biết số đo của một góc thì tính được số đo của góc kia. Dạng 2. Chứng minh hai đường thẳng song song, vuông góc. – Chứng minh hai đường thẳng song song: + Dựa vào dấu hiệu nhận biết hai đường thẳng song song. + Dựa vào tiên đề Euclid. + Dựa vào dấu hiệu: cùng vuông góc, cùng song song với đường thẳng thứ ba. – Chứng minh hai đường thẳng vuông góc: + Dựa vào dấu hiệu: Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng kia. + Dựa vào dấu hiệu: Hai đường thẳng cắt nhau trong bốn góc tạo thành có một góc vuông. PHẦN III . BÀI TẬP TƯƠNG TỰ LUYỆN.
Chuyên đề hai đường thẳng song song và dấu hiệu nhận biết Toán 7
Tài liệu gồm 32 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề hai đường thẳng song song và dấu hiệu nhận biết trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1: Xác định cặp góc so le trong, cặp góc đồng vị, cặp góc trong cùng phía, cặp góc so le ngoài trên hình vẽ cho trước. Vẽ hai đường thẳng song song hoặc kiểm tra xem hai đường thẳng có song song với nhau không? Tính số đo góc. + Dựa vào vị trí của các cặp góc xác định đúng cặp góc so le trong, cặp góc đồng vị, cặp góc trong cùng phía, cặp góc so le ngoài trên hình vẽ cho trước. + Dùng góc nhọn của ê-ke (Áp dụng thực hành 1 hoặc thực hành 2) để vẽ hai góc so le trong hoặc hai góc đồng vị bằng nhau. + Dùng thước đo góc để kiểm tra xem hai góc so le trong hoặc hai góc đồng vị (các góc tạo bởi một đường thẳng cắt hai đường thẳng cần kiểm tra có song song hay không) có bằng nhau hay không. Dạng 2: Nhận biết hai đường thẳng song song. Vận dụng tính số đo góc. + Dựa vào tính chất hai góc kề bù, đối đỉnh để chỉ ra hai góc so le trong hoặc hai góc đồng vị bằng nhau hoặc hai góc trong cùng phía bù nhau. + Áp dụng tính chất hai góc kề bù, đối đỉnh để lý luận và biến đổi tính góc. PHẦN III . BÀI TẬP TỰ LUYỆN.