Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề vào 10 môn Toán (chuyên Tin) 2022 - 2023 trường chuyên Hùng Vương - Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi chuyên Tin) năm học 2022 – 2023 trường THPT chuyên Hùng Vương, tỉnh Phú Thọ; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề vào 10 môn Toán (chuyên Tin) 2022 – 2023 trường chuyên Hùng Vương – Phú Thọ : + Cho hai số thực a b phân biệt. Quanh đường tròn viết n số thực đôi một khác nhau 3 n sao cho mỗi số bằng tổng của hai số đứng liền kề nó. Tìm n và các số được viết nếu hai số đầu tiên được viết lần lượt là a và b. + Cho tam giác ABC nội tiếp đường tròn (O) có đường cao 1 AA đường trung tuyến BB1 và đường phân giác trong 1 CC. Gọi DEF lần lượt là giao điểm của 11 1 AA BB CC với (O). Biết ABC 111 là tam giác đều. a) Chứng minh rằng tam giác ABC đều. b) Gọi M là trung điểm của đoạn thẳng CE N là trung điểm của đoạn thẳng CD I là giao điểm của AN và FM. Tính AIF. c) Tia CI cắt AF và (O) lần lượt tại J và K. Chứng minh rằng I là trung điểm của CK. Tính tỉ số JA JF. + Chứng minh rằng nếu m n là hai số tự nhiên thỏa mãn 2 2 2022 2023 mm nn thì 2022 1 m n là số chính phương.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Nam Định
Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Nam Định Bản PDF - Nội dung bài viết Đề tuyển sinh THPT năm 2019-2020 môn Toán sở GD ĐT Nam Định Đề tuyển sinh THPT năm 2019-2020 môn Toán sở GD ĐT Nam Định Để tuyển chọn học sinh vào học tại các trường Trung học Phổ thông tại Nam Định, sở Giáo dục và Đào tạo tỉnh đã tổ chức kỳ thi Toán tuyển sinh lớp 10 THPT cho năm học 2019-2020. Đề thi được biên soạn theo dạng trắc nghiệm khách quan kết hợp với tự luận, với 8 câu trắc nghiệm và 5 câu tự luận. Thời gian làm bài là 120 phút, đề thi có đáp án và lời giải chi tiết. Ví dụ về câu hỏi trong đề tuyển sinh: Chứng minh tứ giác ABOC là tứ giác nội tiếp và ∆CEF đồng dạng ∆BEC. Chứng minh BF.CK = BK.CF. Chứng minh AE là tiếp tuyến của đường tròn ngoại tiếp ∆ABF. Tìm tất cả các giá trị của m để hàm số y = (1 – m)x + m + 1 đồng biến trên R. Xác định giá trị nhỏ nhất của biểu thức P = 1/2.(x + y + z)^2 + 4(x^2 + y^2 + z^2 – xy – yz – zx). Đề thi tuyển sinh môn Toán là cơ hội để học sinh thể hiện năng lực và kiến thức của mình, từ đó có cơ hội tiếp tục học tập tại các trường Trung học Phổ thông tại Nam Định.
Đề tuyển sinh năm 2019 2020 môn Toán sở GD ĐT Quảng Nam (chuyên Toán)
Nội dung Đề tuyển sinh năm 2019 2020 môn Toán sở GD ĐT Quảng Nam (chuyên Toán) Bản PDF - Nội dung bài viết Đề tuyển sinh năm 2019 - 2020 môn Toán sở GD ĐT Quảng Nam (chuyên Toán) Đề tuyển sinh năm 2019 - 2020 môn Toán sở GD ĐT Quảng Nam (chuyên Toán) Ngày 10 - 12 tháng 06 năm 2019, sở Giáo dục và Đào tạo tỉnh Quảng Nam đã tổ chức kỳ thi môn Toán tuyển sinh vào lớp 10 chuyên Toán cho năm học 2019 - 2020. Đề thi được biên soạn theo dạng tự luận với 6 bài toán, thời gian làm bài thi là 120 phút, đề thi có lời giải chi tiết. Trích dẫn một số câu hỏi từ đề tuyển sinh lớp 10 năm 2019 - 2020 môn Toán sở GD&ĐT Quảng Nam (chuyên Toán): Cho parabol (P): y = -x^2 và đường thẳng (d): y = x + m - 2. Tìm tất cả các giá trị của tham số m để (d) cắt (P) tại hai điểm phân biệt lần lượt có hoành độ x1, x2 thỏa mãn x1^2 + x2^2 < 3. Chứng minh rằng với mọi số nguyên dương n, số M = 9.3^4n - 8.2^4n + 2019 chia hết cho 20. Cho hình bình hành ABCD có góc A nhọn. Gọi H, K lần lượt là hình chiếu vuông góc của C lên các đường thẳng AB, AD... Các câu hỏi này đều đòi hỏi sự tư duy logic và khả năng giải quyết vấn đề của học sinh. Nếu bạn muốn thử sức mình và trau dồi kiến thức Toán, đây sẽ là cơ hội tốt để làm điều đó. Chúc các bạn thành công!
Đề tuyển sinh THPT năm 2019 môn Toán sở GD ĐT Đà Nẵng
Nội dung Đề tuyển sinh THPT năm 2019 môn Toán sở GD ĐT Đà Nẵng Bản PDF - Nội dung bài viết Đề tuyển sinh THPT năm 2019 môn Toán sở GD ĐT Đà Nẵng Đề tuyển sinh THPT năm 2019 môn Toán sở GD ĐT Đà Nẵng Sytu xin gửi đến quý thầy cô và các em học sinh đề tuyển sinh lớp 10 THPT năm 2019 môn Toán sở Giáo dục và Đào tạo thành phố Đà Nẵng. Đề thi bao gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 120 phút, có đáp số và hướng dẫn giải. Trích đề tuyển sinh lớp 10 THPT năm 2019 môn Toán sở GD&ĐT Đà Nẵng: Đề bài 1: Cho đường tròn (O) tâm O, đường kính AB và C là điểm nằm trên đoạn thẳng OB (với C khác B). ... Đề bài 2: Một mảnh đất hình chữ nhật có diện tích 80 mét vuông. Nếu giảm chiều rộng 3 mét và tăng chiều dài 10 mét thì diện tích mảnh đất tăng thêm 20 mét vuông. Tính kích thước của mảnh đất. Đề bài 3: Cho phương trình 4x^2 + (m^2 + 2m – 15)x + (m + 1)^2 – 20 = 0, với m là tham số. ... Đề thi này mang đến những bài toán thú vị, đòi hỏi sự tư duy logic và khả năng giải quyết vấn đề của các thí sinh. Hy vọng rằng các em sẽ tự tin và thành công trong kỳ thi sắp tới!
Đề Toán tuyển sinh vào 10 chuyên năm 2019 2020 sở GD ĐT Hưng Yên (Đề chung)
Nội dung Đề Toán tuyển sinh vào 10 chuyên năm 2019 2020 sở GD ĐT Hưng Yên (Đề chung) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh vào lớp 10 chuyên năm 2019 - 2020 sở GD&ĐT Hưng Yên (Đề chung) Đề Toán tuyển sinh vào lớp 10 chuyên năm 2019 - 2020 sở GD&ĐT Hưng Yên (Đề chung) Xin chào quý thầy cô giáo và các em học sinh. Dưới đây là đề Toán tuyển sinh vào lớp 10 trường THPT chuyên năm học 2019 - 2020 sở GD&ĐT Hưng Yên, đây là đề thi chung dành cho các thí sinh tham gia vòng thi đầu tiên. Đề Toán tuyển sinh vào lớp 10 chuyên năm 2019 - 2020 sở GD&ĐT Hưng Yên (Đề chung) gồm 5 bài toán được biên soạn theo dạng đề tự luận. Thí sinh sẽ có 2 tiếng (120 phút) để hoàn thành bài thi Toán. Đề thi bao gồm lời giải chi tiết và thang điểm cho từng bài. Trích đề Toán tuyển sinh vào lớp 10 chuyên năm 2019 - 2020 sở GD&ĐT Hưng Yên (Đề chung): + Bài toán 1: Cho tam giác ABC vuông tại A. Vẽ các nửa đường tròn đường kính AB và AC sao cho không có điểm nào nằm trong tam giác ABC. Chứng minh tứ giác BMNC là hình thang vuông... + Bài toán 2: Cho hai đường thẳng (d): y = (m - 2)x + m và (Δ): y = -4x + 1. Tìm m để (d) song song với (Δ)... + Bài toán 3: Cho phương trình x^2 - 2(m + 1)x + m^2 + 4 = 0 (m là tham số). Giải phương trình khi m = 2... Đề Toán tuyển sinh vào lớp 10 chuyên năm 2019 - 2020 sở GD&ĐT Hưng Yên đưa ra những bài toán thú vị, đòi hỏi sự tư duy logic và khả năng giải quyết vấn đề của thí sinh. Chúc các em học sinh làm bài tốt và đạt kết quả cao trong kỳ thi sắp tới.