Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lớp 9 môn Toán năm 2020 2021 trường THCS Tây Sơn Hà Nội

Nội dung Đề khảo sát chất lượng lớp 9 môn Toán năm 2020 2021 trường THCS Tây Sơn Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát chất lượng Toán lớp 9 trường THCS Tây Sơn Hà Nội Đề khảo sát chất lượng Toán lớp 9 trường THCS Tây Sơn Hà Nội Xin chào các thầy cô giáo và các em học sinh! Hôm nay, Sytu xin giới thiệu đến các bạn Đề khảo sát chất lượng môn Toán lớp 9 năm học 2020 - 2021 của trường THCS Tây Sơn, quận Hai Bà Trưng, thành phố Hà Nội. Đề thi bao gồm các câu hỏi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm, nhằm giúp các em rèn luyện kỹ năng và chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán sắp tới. Một số câu hỏi trong đề khảo sát bao gồm: - Một công ty mỹ phẩm chuẩn bị ra một mẫu sản phẩm dưỡng da mang tên Ngọc Trai, với thiết kế hình khối cầu và hình khối trụ bên trong. Hãy tính thể tích của phần khối cầu còn lại nằm ngoài hình trụ đó. - Trong mặt phẳng toạ độ Oxy, chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm A và B, sau đó tìm m để tam giác MHK có diện tích bằng 4. - Trong đường tròn (O;R) với đường kính AB = 2R, chứng minh tứ giác BCHK nội tiếp và tích AH.AK không đổi khi K chuyển động trên cung nhỏ MB. Tìm vị trí của K để tổng KM + KN + KB lớn nhất. Chúc các em học sinh của trường THCS Tây Sơn Hà Nội làm bài tốt và đạt kết quả cao trong kỳ thi khảo sát. Hy vọng rằng Đề khảo sát chất lượng Toán lớp 9 này sẽ giúp các em tự tin và thành công trên con đường học tập.

Nguồn: sytu.vn

Đọc Sách

Đề KSCL Toán 9 lần 1 năm 2021 - 2022 phòng GDĐT Mê Linh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh lớp 9 môn Toán lần 1 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Mê Linh, thành phố Hà Nội. Trích dẫn đề KSCL Toán 9 lần 1 năm 2021 – 2022 phòng GD&ĐT Mê Linh – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai vòi nước cùng chảy vào một bể không có nước thì sau 12 giờ sẽ đầy bể. Nếu mở vòi I chảy trong 4 giờ rồi khóa lại và mở tiếp vòi II chảy trong 3 giờ thì được 3/10 bể. Hỏi nếu mỗi vòi chảy một mình thì sau bao lâu sẽ đầy bể? + Tính diện tích tường nhà cần phải quét vôi của một căn phòng hình hộp chữ nhật có chiều dài 5 m, chiều rộng 4 m, chiều cao 4 m; biết diện tích để làm cửa đi và cửa sổ chiếm 20% diện tích tường. + Cho phương trình m2x – 2(m + 1)x + 1 = 0 (*) với m là tham số. a) Tìm giá trị của m để phương trình (*) có nghiệm bằng 2 b) Tìm giá trị nguyên nhỏ nhất của m để phương trình (*) có hai nghiệm phân biệt.
Đề KSCL Toán 9 năm 2021 - 2022 phòng GDĐT Phú Xuyên - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Phú Xuyên, thành phố Hà Nội. Trích dẫn đề KSCL Toán 9 năm 2021 – 2022 phòng GD&ĐT Phú Xuyên – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ôtô khách và một ô tô tải cùng xuất phát từ địa điểm A đi đến địa điểm B đường dài 180 km, do vận tốc của ô tô khách lớn hơn ô tô tải 10 km/h nên ô tô khách đến B trước ô tô tải 36 phút. Tính vận tốc của mỗi ô tô (Biết rằng trong quá trình đi từ A đến B vận tốc của mỗi ô tô không đổi). + Một bể nước có dạng hình hộp chữ nhật có chiều cao 2 m, diện tích đáy là 4,5 m2. Hỏi bể nước đó đựng đầy được bao nhiêu m3 nước? (bỏ qua bề dày của bể nước). + Cho các hàm số: y = x2 (P) và y = 3x + m2 (d) (x là biến số, m là tham số cho trước) a. Chứng minh rằng với bất kỳ giá trị nào của m, đường thẳng (d) luôn cắt parabol (P) tại 2 điểm phân biệt. b. Gọi y1 và y2 là tung độ các giao điểm của đường thẳng (d) và parabol (P). Tìm m để có đẳng thức: y1 + y2 = 11.
Đề KSCL Toán 9 năm 2020 - 2021 trường THCS Nguyễn Tri Phương - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề KSCL Toán 9 năm học 2020 – 2021 trường THCS Nguyễn Tri Phương, quận Ba Đình, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Năm ngày 03 tháng 06 năm 2021. Trích dẫn đề KSCL Toán 9 năm 2020 – 2021 trường THCS Nguyễn Tri Phương – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình. Do dịch CoVid-19 bùng phát trở lại nên theo kế hoạch hai tổ sản xuất dự định làm 1000 hộp khẩu trang để cung cấp cho tâm dịch Bắc Giang. Nhưng khi thực hiện tổ một làm vượt mức kế hoạch 15%, tổ hai làm vượt mức kế hoạch 20% nên cả hai tổ làm được 1170 hộp khẩu trang. Tính số hộp khẩu trang mà mỗi tổ phải làm theo kế hoạch. + Cho phương trình: x2 + 2mx + 2m – 1 = 0 (tham số m). a) Giải phương trình khi m = -3. b) Tìm m để phương trình có hai nghiệm phân biệt x1 và x2 thỏa mãn x1 ≤ 0 < x2. + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O; R). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H. 1) Chứng minh tứ giác BFEC nội tiếp. 2) Tia AO cắt đường tròn (O) tại K. Chứng minh AB. AC = AK. AD. 3) Gọi M là trung điểm của BC. Chứng minh ba điểm H, M, K thẳng hàng. Cho BC cố định, A chuyển động trên cung lớn BC sao cho tam giác ABC có ba góc nhọn, chứng minh diện tích hình tròn ngoại tiếp tam giác AEF không đổi.
Đề KSCL Toán 9 năm 2020 - 2021 phòng GDĐT quận Hai Bà Trưng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề KSCL Toán 9 năm 2020 – 2021 phòng GD&ĐT quận Hai Bà Trưng – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Hai ngày 24 tháng 05 năm 2021. Trích dẫn đề KSCL Toán 9 năm 2020 – 2021 phòng GD&ĐT quận Hai Bà Trưng – Hà Nội : + Cho parabol 2 y x P và đường thẳng y mx 2 d (m là tham số). a) Chứng minh P và d luôn cắt nhau tại hai điểm phân biệt A và B nằm về hai phía của trục tung. b) Tìm m để diện tích tam giác OAB bằng 3 (O là gốc tọa độ). + Cho đường tròn (O R) đường kính AB. Lấy điểm C thuộc đường tròn sao cho AC R; điểm D thuộc cung nhỏ BC (D khác B C). Kéo dài AC và BD cắt nhau tại E; kẻ EH vuông góc với AB tại H (H thuộc AB), EH cắt AD tại I. a) Chứng minh tứ giác AHDE là tứ giác nội tiếp. b) Kéo dài DH cắt (O R) tại điểm thứ hai là F. Chứng minh CF song song với EH và tam giác BCF là tam giác đều. c) Giả sử điểm D thay đổi trên cung nhỏ BC nhưng vẫn thỏa mãn điều kiện của đề bài. Xác định vị trí của D để chu vi tứ giác ABDC đạt giá trị lớn nhất. + Cho ba số thực dương abc có tổng thỏa mãn điều kiện abc 3. Chứng minh bất đẳng thức sau?