Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Nắm trọn chuyên đề nguyên hàm, tích phân và ứng dụng ôn thi THPT QG môn Toán

Tài liệu gồm 409 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp các dạng bài tập thường gặp về chuyên đề nguyên hàm, tích phân và ứng dụng, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 ôn tập hướng đến kỳ thi tốt nghiệp THPT Quốc gia môn Toán năm học 2023 – 2024. CHỦ ĐỀ 1 . NGUYÊN HÀM CỦA HÀM SỐ CƠ BẢN. Dạng 1: Nguyên hàm của hàm số cơ bản. Dạng 2: Nguyên hàm của hàm số phân thức hữu tỷ. Dạng 3: Tìm nguyên hàm thỏa mãn điều kiện cho trước. Dạng 4: Tìm nguyên hàm bằng phương pháp đổi biến số. Dạng 5: Tìm nguyên hàm bằng phương pháp nguyên hàm từng phần. Dạng 6: Nguyên hàm hàm ẩn. CHỦ ĐỀ 2 . TÍCH PHÂN CỦA HÀM SỐ CƠ BẢN. Dạng 7: Tích phân của hàm số cơ bản. Dạng 8: Tính tích phân bằng phương pháp đổi biến. Dạng 9: Tính tích phân bằng phương pháp tích phân từng phần. Dạng 10: Tích phân hàm ẩn và tích phân đặc biệt. Dạng 11: Tính tích phân bằng phương pháp vi phân. Dạng 12: Ứng dụng của tích phân tính diện tích hình phẳng. Dạng 13: Ứng dụng tích phân vào bài toán chuyển động.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm nguyên hàm của hàm lượng giác
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề nguyên hàm của hàm lượng giác, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. A. LÝ THUYẾT 1. Một số công thức lượng giác cần nhớ. 2. Một số nguyên hàm lượng giác cơ bản. 3. Các dạng nguyên hàm lượng giác thường gặp. + Dạng 1: Nguyên hàm m n I sin x cos x dx. + Dạng 2: Nguyên hàm m n dx I sin x cos x. + Dạng 3: Nguyên hàm lượng giác của hàm tanx và cotx. + Dạng 4: Nguyên hàm sử dụng công thức biến đổi tích thành tổng. + Dạng 5: Nguyên hàm dx I a sin x b cos x c. B. VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm nguyên hàm của hàm hữu tỉ
Tài liệu gồm 22 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề nguyên hàm của hàm hữu tỉ, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. A. LÝ THUYẾT I. Các công thức cần nhớ. II. Nguyên hàm dạng P x dx I Q x. + Dạng 1: P x dx I ax b. + Dạng 2: 2 mx n I dx ax bx c. + Dạng 3: P x dx I Q x với 3 2 Q x ax bx cx d. + Dạng 4: Tham khảo và nâng cao: 4 2 P x dx I x a trong đó bậc của P(x) nhỏ hơn 4. + Dạng 5: Tham khảo và nâng cao: Một số nguyên hàm hữu tỷ khi Q(x) là đa thức bậc 6. B. VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm nguyên hàm từng phần
Tài liệu gồm 23 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề nguyên hàm từng phần, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. A. LÝ THUYẾT TRỌNG TÂM Một số dạng nguyên hàm từng phần thường gặp: + Dạng 1: I P x mx n dx ln trong đó P x là đa thức. Theo quy tắc ta đặt ln u mx n dv P x dx. + Dạng 2: sin cos x I P x dx x trong đó P x là đa thức. Theo quy tắc ta đặt sin cos u Px x dv dx x. + Dạng 3: ax b I P x e dx trong đó P x là đa thức. Theo quy tắc ta đặt ax b u Px dv a dx. + Dạng 4: sin cos x x I e dx x. Theo quy tắc ta đặt sin cos x x u x dv e dx. B. VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm phương pháp đổi biến tìm nguyên hàm
Tài liệu gồm 22 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương pháp đổi biến tìm nguyên hàm, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. DẠNG 1. ĐỔI BIẾN SỐ HÀM SỐ VÔ TỈ (Đặt t = hàm theo biến x). + Mẫu 1: Đổi biến hàm số vô tỷ đơn giản. + Mẫu 2: Nguyên hàm dạng x f a dx. + Mẫu 3: Nguyên hàm dạng ln f x dx x. DẠNG 2. ĐỔI BIẾN SỐ HÀM VÔ TỈ (Đặt x = hàm theo biến t). + Mẫu 1: Nếu f x có chứa 2 2 a x ta đặt sin 2 2 x a tt. + Mẫu 2: Dạng 2 2 x a thì đổi biến số tan 2 2 xa t t π π. + Mẫu 3: Dạng 2 2 x a thì ta đặt sin a x t (hoặc cos a x t). + Mẫu 4: Dạng 2 2 dx x a thì ta đặt xa t tan. + Mẫu 5: Nếu f x có chứa a x a x thì đặt 2 2 cos 2 2 sin 2 cos 2 1 cos 2 cos 1 cos 2 sin dx d a t a tdt xa t ax t t ax t t. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.