Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG cấp trường lớp 10 môn Toán năm 2020 2021 trường Cẩm Xuyên Hà Tĩnh

Nội dung Đề thi HSG cấp trường lớp 10 môn Toán năm 2020 2021 trường Cẩm Xuyên Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi HSG cấp trường lớp 10 môn Toán năm 2020-2021 trường Cẩm Xuyên Hà Tĩnh Đề thi HSG cấp trường lớp 10 môn Toán năm 2020-2021 trường Cẩm Xuyên Hà Tĩnh Vào ngày ... tháng 01 năm 2021, trường THPT Cẩm Xuyên tỉnh Hà Tĩnh đã tổ chức kỳ thi chọn học sinh giỏi cấp trường môn Toán cho học sinh lớp 10 năm học 2020-2021. Đề thi HSG cấp trường môn Toán lớp 10 năm 2020-2021 của trường Cẩm Xuyên Hà Tĩnh bao gồm 01 trang với 07 bài toán dạng tự luận. Thời gian làm bài là 150 phút. Đề thi đi kèm với lời giải chi tiết và hướng dẫn chấm điểm. Một số câu hỏi trong đề thi HSG cấp trường lớp 10 môn Toán năm 2020-2021 của trường Cẩm Xuyên Hà Tĩnh: Cho hình vuông ABCD có cạnh bằng a. Gọi G là trọng tâm tam giác ABC và M, N là hai điểm lần lượt thuộc hai cạnh AB, CD sao cho AB = 6BM, DC = 3DN. Hãy tính độ dài của vectơ AB + AD theo a và chứng minh ba điểm M, N, G thẳng hàng. Cho hàm số y = x2 + mx + 1 (m là tham số). Hãy lập bảng biến thiên của hàm số khi m = -4 và tìm điều kiện của tham số m để đồ thị của hàm số cắt đường thẳng y = x + 1 tại hai điểm phân biệt nằm về một phía của trục hoành. Cho hàm số y = ax2 + bx + c có đồ thị như hình vẽ. Chứng minh rằng phương trình (1 - c)x2 + (2 - b)x + 1 - a = 0 luôn có hai nghiệm phân biệt. Đề thi HSG cấp trường lớp 10 môn Toán năm 2020-2021 của trường Cẩm Xuyên Hà Tĩnh cung cấp cho học sinh cơ hội thách thức tư duy và khám phá sự sáng tạo trong việc giải quyết các bài toán Toán học phức tạp.

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Đan Phượng - Hà Nội
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội : + Cho a, b, c là các số thực thỏa mãn: a b b c c a 8. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 2 2 2 P a b c. + Viết phương trình đường thẳng đi qua B(4;5) và tạo với đường thẳng 7 8 0 x y một góc 45°. + Cho tứ giác ABCD, AC và BD cắt nhau tại O. Gọi H, K lần lượt là trực tâm của tam giác ABO và CDO. Gọi M, N lần lượt là trung điểm của AD và BC. Chứng minh rằng HK MN.
Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Diễn Châu 2 - Nghệ An
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An : + Cho tam giác ABC có trọng tâm G. Gọi E, F là các điểm thỏa mãn AE = 2AB, 5AF = 2AC. Chứng minh ba điểm G, E, F thẳng hàng. + Cho tam giác ABC có ba cạnh a, b, c (với b > c), biết nửa chu vi bằng 10, góc CAB = 60 độ. Bán kính đường tròn nội tiếp tam giác đó bằng 3. Tính độ dài đường trung tuyến ma. + Trong mặt phẳng (Oxy), cho tam giác ABC có A(3;4), trực tâm H(1;3) và tâm đường tròn ngoại tiếp tam giác ABC là I(2;0). Viết phương trình các đường thẳng AH và BC.
Đề thi HSG Toán 10 lần 2 năm 2020 - 2021 trường THPT Đồng Đậu - Vĩnh Phúc
Đề thi HSG Toán 10 lần 2 năm học 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 10 lần 2 năm 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc : + Cho hình chữ nhật ABCD có AB = 2AD, BC = a. Tính giá trị nhỏ nhất của độ dài vectơ u = MA + 2MB + 3MC, trong đó M là điểm thay đổi trên đường thẳng BC. + Cho tam giác ABC vuông tại A, G là trọng tâm tam giác ABC. Tính độ dài cạnh AB biết cạnh AC = a và góc giữa hai véc tơ GB và GC là nhỏ nhất. + Cho tam giác ABC cân tại A, nội tiếp đường tròn tâm O. Gọi D là trung điểm của AB, E là trọng tâm tam giác ADC. Chứng minh rằng OE vuông góc CD.