Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo tuyển sinh 10 môn Toán 2024 - 2025 phòng GDĐT Tân Bình - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề tham khảo tuyển sinh vào lớp 10 môn Toán năm học 2024 – 2025 phòng Giáo dục và Đào tạo quận Tân Bình, thành phố Hồ Chí Minh; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tham khảo tuyển sinh 10 môn Toán 2024 – 2025 phòng GD&ĐT Tân Bình – TP HCM : + Thầy Bảo, nhân viên y tế, được nhà trường phân công mua một số hộp khẩu trang để phục vụ cho công tác phòng chống dịch Covid của nhà trường. Thầy dự định mua một số hộp khẩu trang tại nhà thuốc Pharmacity. Khi tham khảo giá trên trang web thì tổng số tiền thầy sẽ trả là 600 nghìn đồng. Tuy nhiên, khi đến mua trực tiếp, Pharmacity có chương trình khuyến mãi mỗi hộp khẩu trang được giảm 2 nghìn đồng nên thầy quyết định mua thêm 2 hộp. Khi đó tổng số tiền phải trả là 672 nghìn đồng. Hỏi thầy Bảo đã mua tất cả bao nhiêu hộp khẩu trang? + Một kho hàng nhập gạo (trong kho chưa có gạo) trong 4 ngày liên tiếp và mỗi ngày (kể từ ngày thứ hai) đều nhập một lượng gạo bằng 120% lượng gạo đã nhập vào kho trong một ngày trước đó. Sau đó, từ ngày thứ năm kho ngừng nhập và mỗi ngày kho xuất một lượng gạo bằng 1 10 lượng gạo ở trong một ngày trước đó. a) Ngày thứ ba, sau khi nhập xong thì gạo trong kho có 910 tấn gạo. Hỏi ngày thứ nhất kho đã nhập vào bao nhiêu tấn gạo? b) Tính lượng gạo trong kho sau ngày thứ sáu từ khi bắt đầu nhập gạo? + Vừa qua trên mạng xã hội, nhiều người dùng truyền tai nhau hình ảnh về một hiện tượng tự nhiên vô cùng kỳ lạ, xuất hiện vào sáng ngày 24/11/2022. Được biết, bức ảnh này được chụp lại núi Bà Đen, một địa điểm du lịch vô cùng nổi tiếng của Tây Ninh. Trong hình ảnh, đỉnh núi được bao phủ bởi một lớp mây trắng xóa. Không chỉ có vậy, những đám mây còn tạo thành một lớp “vỏ” có phần kỳ bí. Nhiều người gọi đây là hiện tượng “mây vờn”, có người nhận xét trông đám mây như một chiếc nón. Ước tính chiều cao của nón là bán kính đáy của nón là độ dày đám mây là. Tính thể tích đám mây? Biết thể tích hình nón là (trong đó là bán kính đường tròn đáy; là chiều cao hình nón, lấy các kết quả làm tròn chữ số thập phân thứ nhất).

Nguồn: toanmath.com

Đọc Sách

Đề Toán tuyển sinh lớp 10 chuyên năm 2020 - 2021 sở GDĐT Nam Định (Đề 1)
Sáng thứ Năm ngày 09 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Nam Định tổ chức kỳ thi tuyển sinh vào lớp 10 THPT chuyên năm học 2020 – 2021 môn thi Toán. Đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề 1) là đề chung được sử dụng cho tất cả các thí sinh tham dự kỳ thi, đề gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề 1) : + Cho phương trình x^2 – (m + 1)x + 2m – 2 = 0 (với m là tham số). a) Chứng minh rằng với mọi giá trị của tham số m thì phương trình luôn có nghiệm. b) Tìm tất cả các giá trị của tham số m để phương trình có hai nghiệm dương phân biệt x1, x2 sao cho √(x1 + 2) – √(x2 + 2) = 1. [ads] + Từ điểm A nằm ngoài đường tròn (O) kẻ các tiếp tuyến AB, AC đến đường tròn (B và C là các tiếp điểm). Đoạn thẳng AC cắt BC và đường tròn (O) lần lượt tại M và I. Gọi D là điểm thuộc cung lớn BC của đường tròn (O) (với DB < DC). 1) Chứng minh rằng ABC là tứ giác nội tiếp và I là tâm đường tròn nội tiếp tam giác ABC. 2) Gọi E, F lần lượt là hình chiếu vuông góc của A trên các đường thẳng DB, DC. Chứng minh DM vuông góc với EF. 3) Gọi K là giao điểm thứ hai của tia DM với đường tròn (O). Chứng minh KI là tia phân giác của AKM. + Tìm tất cả các giá trị của tham số m để đường thẳng y = x + 3m cắt parabol y = x^2 tại hai điểm phân biệt.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Bình Dương
Sáng thứ Năm ngày 09 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Dương tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán nhằm chuẩn bị cho năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bình Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bình Dương : + Cho phương trình: x^2 – 2020x + 2021 = 0 có hai nghiệm phân biệt x1 và x2. Không giải phương trình, tính giá trị của các biểu thức sau: 1/x1 + 1/x2; x1^2 + x2^2. + Cho Parabol (P): y = 3/2x^2 và đường thẳng (d): y = -3/2x + 3. 1) Vẽ đồ thị của (P) và (d) trên cùng một mặt phẳng tọa độ. 2) Tìm tọa độ các giao điểm của (P) và (d) bằng phép tính. [ads] + Cho đường tròn (O;3cm) có đường kính AB và tiếp tuyến Ax. Trên Ax lấy điểm C sao cho AC = 8cm, BC cắt đường tròn (O) tại D. Đường phân giác của góc CAD cắt đường tròn (O) tại M và cắt BC tại N. 1) Tính độ dài đoạn thẳng AD. 2) Gọi E là giao điểm của AD và MB. Chứng minh tứ giác MNDE nội tiếp được trong đường tròn. 3) Chứng minh tam giác ABN là tam giác cân. 4) Kẻ EF vuông góc AB (F thuộc AB). Chứng minh: N, E, F thẳng hàng.
Đề khảo sát vào lớp 10 môn Toán năm 2020 - 2021 phòng GDĐT Gia Lâm - Hà Nội
Thứ Năm ngày 25 tháng 06 năm 2020, phòng Giáo dục và Đào tạo huyện Gia Lâm, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán ôn thi tuyển sinh vào lớp 10 năm học 2020 – 2021. Đề khảo sát vào lớp 10 môn Toán năm 2020 – 2021 phòng GD&ĐT Gia Lâm – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 90 phút, cấu trúc đề bám sát đề tuyển sinh lớp 10 môn Toán của sở Giáo dục và Đào tạo thành phố Hà Nội những năm gần đây. Trích dẫn đề khảo sát vào lớp 10 môn Toán năm 2020 – 2021 phòng GD&ĐT Gia Lâm – Hà Nội : + Một tàu tuần tra chạy ngược dòng 60 km, sau đó chạy xuôi dòng 48km trên cùng một dòng sông có vận tốc của dòng nước là 2km/h. Tính vận tốc của tàu tuần tra khi nước yên lặng, biết thời gian xuôi dòng ít hơn thời gian ngược dòng là 60 phút. + Một bồn nước inox dạng hình trụ có chiều cao 1,8m và diện tích đáy là 1,25m2. Hỏi bồn nước này đựng đầy được bao nhiêu mét khối nước? (bỏ qua bề dày của bồn nước). [ads] + Cho đường tròn tâm O bán kính R, kẻ đường kính AB. Gọi d là tiếp tuyến của (O) tại A. Lấy C là một điểm bất kì trên d (điểm C khác điểm A). Từ C kẻ tiếp tuyến thứ hai CM với (O) (M là tiếp điểm). Kẻ MH vuông góc với AB tại H. Gọi E là giao điểm của CO và MA, gọi K là giao điểm của CB và MH. 1) Chứng minh tứ giác AOMC nội tiếp. 2) Chứng minh EA.MH = EO.HA. 3) Kéo dài BM cắt d tại N. Chứng minh C là trung điểm của AN và KE // AB. 4) Qua O vẽ đường thẳng vuông góc với OC, đường thẳng này cắt các tia CA và CM theo thứ tự tại P và Q. Xác định vị trí của C để diện tích tam giác CPQ nhỏ nhất.
Bộ đề tham khảo tuyển sinh lớp 10 năm 2020 - 2021 môn Toán sở GDĐT TP HCM
Tài liệu gồm 52 trang, tuyển tập một số đề tham khảo tuyển sinh lớp 10 năm học 2020 – 2021 môn Toán sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. Trích dẫn bộ đề tham khảo tuyển sinh lớp 10 năm 2020 – 2021 môn Toán sở GD&ĐT TP HCM: + Lúc 6 giờ 15 phút, Nam đi bộ từ nhà đến trường với vận tốc trung bình là 6km/ giờ. Đến cổng trường Nam mới phát hiện quên đem theo quyển tập bài tập toán nên em vội vàng quay về nhà để lấy tập với vận tốc nhanh hơn vận tốc lúc đi là 3 km/ giờ và cũng đi với vận tốc này để đến trường. Nam đến trường lúc 7 giờ kém 3 phút. Tính quãng đường từ nhà Nam đến trường? + Cho (O; R) đường kính BC. M thuộc (O) sao cho MB < MC. Tiếp tuyến tại M của (O) cắt tia CB tại A. Vẽ dây MN ⊥ BC tại H. a) Chứng minh AH.AO = AB.AC. b) Gọi K là giao điểm của MB và CN. Chứng minh ABNK nội tiếp. c) Tính diện tích phần tứ giác AMCK nằm ngoài (O) trong trường hợp MB = R. [ads] + Người ta cắt một khúc gỗ hình trụ bởi một mặt phẳng song song với trục OO’ của hình trụ, ta được mặt cắt là hình chữ nhật ABCD như hình vẽ bên, biết AOB = 90 độ, AB = 3√2cm, AD = 10cm. Tính diện tích xung quanh và thể tích lúc đầu của khúc gỗ hình trụ đó. Cho biết trong hình trụ: diện tích xung quanh là S = 2πRh, thể tích V = πR2h và π ≈ 3,14.