Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh lớp 10 năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung)

Thứ Ba ngày 28 tháng 05 năm 2019, trường Trung học Phổ thông chuyên Đại học Sư phạm Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020, nhằm tuyển chọn các em học sinh đạt yêu cầu về mặt kiến thức, để chuẩn bị cho năm học mới. Đề Toán tuyển sinh lớp 10 năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung) được dùng cho mọi thí sinh thi vào trường, đề gồm 1 trang với 5 bài toán, học sinh làm bài thi trong khoảng thời gian 120 phút. Trích dẫn đề Toán tuyển sinh lớp 10 năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung) : + Trên quãng đường AB dài 20km, tại cùng một thời điểm, bạn An đi bộ từ A đến B và bạn Bình đi bộ từ B về A. Sau 2 giờ kể từ lúc xuất phát, An và Bình gặp nhau tại C và cùng nghỉ tại C 15 phút (vận tốc của An trên quãng đường AC không thay đổi, vận tốc của Bình trên quãng đường BC không thay đổi). Sau khi nghỉ, An đi tiếp đến B với vận tốc nhỏ hơn vận tốc của An trên quãng đường AC là 1 km/h, Bình đi tiếp đến A với vận tốc lớn hơn vận tốc của Bình trên quãng đường BC là 1 km/h. Biết rằng An đến B sớm hơn so với Bình đến A là 48 phút. Hỏi vận tốc của An trên quãng đường AC là bao nhiêu? [ads] + Cho đường tròn (O) bán kính R ngoại tiếp tam giác ABC có ba góc nhọn. Gọi AA1, BB1, CC1 là các đường cao của tam giác ABC. Đường thẳng A1C1 cắt đường tròn (O) tại A’ và C’ (A1 nằm giữa A’ và C1). Các tiếp tuyến của đường tròn (O) tại A’ và C’ cắt nhau tại B’. 1. Gọi H là trực tâm của tam giác ABC. Chứng minh: HC1.A1C=A1C1.HB1. 2. Chứng minh ba điểm B,B’,O thằng hàng. 3. Khi tam giác ABC là tam giác đều. Hãy tính A’C’ theo R. + Cho các đa thức: P(x) = x^2 + ax + b, Q(x) = x^2 + cx + d với a, b, c, d là các số thực. 1. Tìm a và b để 1 và a là nghiệm của phương trình P(x) = 0. 2. Giả sử phương trình P(x) = 0 có hai nghiệm phân biệt x1, x2 và phương trình Q(x) = 0 có hai nghiệm phân biệt x3, x4 sao cho P(x3) + P(x4) = Q(x1) + Q(x2). Chứng minh: |x2 – x1| = |x4 – x3|.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán vào 10 lần 3 năm 2023 - 2024 phòng GDĐT Diễn Châu - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 3 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 lần 3 năm 2023 – 2024 phòng GD&ĐT Diễn Châu – Nghệ An : + Một mảnh vườn hình chữ nhật có chiều dài lớn hơn chiều rộng 5m. Nếu tăng chiều dài 4m và tăng chiều rộng 3m thì diện tích mảnh vườn là 112m2. Tính chu vi của mảnh vườn lúc đầu. + Một cái ly có phần phía trên dạng hình nón đỉnh S có bán kính đáy bằng 3cm. Người ta rót nước vào cái ly, biết chiều cao của nước trong ly bằng 6cm và bán kính r của đường tròn đáy hình nón tạo thành khi rót nước vào ly bằng 2/3 bán kính đáy cái ly (hình bên). Tính thể tích của nước có trong ly. (Giả sử độ dày của thành ly không đáng kể; π ≈ 3,14 và kết quả làm tròn đến chữ số thập phân thứ hai). + Cho đường tròn (O) đường kính AB cố định, trên đoạn OA lấy điểm I sao cho 2 3 AI OA. Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN (C không trùng M, N, B). Nối AC cắt MN tại E. a) Chứng minh: Tứ giác IECB nội tiếp. b) Chứng minh: 2 AE AC AI IB AI. c) Xác định vị trí của điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất.
Đề thi vào 10 chuyên môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định; kỳ thi được diễn ra vào thứ Bảy ngày 27 tháng 05 năm 2023.
Đề thi thử Toán vào lớp 10 năm 2023 - 2024 lần 3 phòng GDĐT Lộc Hà - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 lần 3 phòng Giáo dục và Đào tạo huyện Lộc Hà, tỉnh Hà Tĩnh; đề thi có đáp án và hướng dẫn chấm điểm mã đề 01 và mã đề 02. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 lần 3 phòng GD&ĐT Lộc Hà – Hà Tĩnh : + Bác Hà đến một cửa hàng để mua một nồi cơm điện nhãn hiệu Cuckoo và một chiếc quạt nhãn hiệu Senko. Theo giá niêm yết thì bác Hà phải thanh toán cho hai món đồ trên với tổng số tiền 4000000 đồng. Nhưng khi thanh toán thì cửa hàng giảm giá 10% cho nồi cơm điện và 8% cho quạt điện nên bác Hà chỉ phải thanh toán 3630000 đồng. Hỏi giá niêm yết trên mỗi sản phẩm mà bác Hà đã mua là bao nhiêu? + Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Biết AH = 3 cm, ACB = 30. Tính AC và AB. + Cho đường tròn (O) và điểm A nằm ngoài đường tròn (O). Từ A kẻ hai tiếp tuyến AB, AC với đường tròn (O) (B và C là các tiếp điểm). Đường thẳng CO cắt đường tròn (O) tại điểm thứ hai là D; đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là E; đường thẳng BE cắt AO tại F; H là giao điểm của AO và BC. a) Chứng minh tứ giác ABOC nội tiếp. b) Chứng minh Tứ giác ODEH nội tiếp và 2 2 2 1 AF EF HB DE AE.
Đề thi thử Toán vào lớp 10 năm 2023 - 2024 trường THCS Trần Phú - Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THCS Trần Phú, quận Kiến An, thành phố Hải Phòng; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 trường THCS Trần Phú – Hải Phòng : + Mẹ Nam đi chợ bán x quả na, mẹ Nam bán được 1 quả giá 50 000(đồng) và 4 quả giá 35 000 (đồng), số na còn lại mẹ bán với giá 12 000 (đồng) một quả. Gọi y (nghìn đồng) là số tiền mà mẹ Nam thu được sau khi bán hết x quả na. a) Lập công thức tính y theo x. b) Hỏi mẹ Nam đã bán bao nhiêu quả na biết số tiền mẹ Nam thu được là 730 000 (đồng)? + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Để sửa một ngôi nhà cần một số thợ làm việc trong một thời gian quy định. Nếu giảm 3 người thì thời gian kéo dài 6 ngày. Nếu tăng thêm 2 người thì xong sớm 2 ngày. Hỏi theo quy định cần bao nhiêu thợ và làm xong trong bao nhiêu ngày, biết rằng khả năng lao động của mỗi thợ đều như nhau? + Một lon nước ngọt hình trụ có thể tích bằng 3 108 cm. Biết chiều cao của lon nước ngọt gấp 2 lần đường kính đáy. Tính diện tích vật liệu cần dùng để làm một vỏ lon như vậy (bỏ qua diện tích phần ghép nối).