Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán năm học 2018 2019 trường THCS Cổ Loa Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán năm học 2018 2019 trường THCS Cổ Loa Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán lớp 9 năm học 2018 - 2019 trường THCS Cổ Loa Hà Nội Đề khảo sát Toán lớp 9 năm học 2018 - 2019 trường THCS Cổ Loa Hà Nội Chúng tôi xin giới thiệu đến các em học sinh lớp 9 đề kiểm tra khảo sát Toán lớp 9 năm học 2018 – 2019 trường THCS Cổ Loa – Hà Nội. Đề thi này được tổ chức vào thứ Bảy ngày 13 tháng 04 năm 2019 nhằm đánh giá kỹ năng học tập môn Toán của học sinh khối lớp 9 trong giai đoạn cuối học kỳ 2 năm học 2018 – 2019. Đây cũng là cơ hội để các em tự kiểm chứng năng lực bản thân trước khi bước vào kỳ thi tuyển sinh vào lớp 10 THPT năm học 2019 – 2020. Đề khảo sát Toán lớp 9 năm học 2018 – 2019 của trường THCS Cổ Loa Hà Nội gồm 01 trang với 05 bài toán dạng tự luận. Học sinh sẽ có thời gian 120 phút để hoàn thành bài kiểm tra khảo sát Toán lớp 9. Dưới đây là một số câu hỏi trong đề khảo sát: Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai người cùng làm chung một công việc thì sau 6 giờ xong. Nếu làm riêng xong công việc đó thì người thứ nhất làm nhanh hơn người thứ hai là 5 giờ. Hãy tính thời gian mỗi người làm riêng xong công việc đó. Trong mặt phẳng xOy cho Parabol (P): y = x^2 và đường thẳng (d): y = 2(m – 3)x + 4. Hãy chứng minh rằng đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt A và B với mọi giá trị của m. Tiếp theo, gọi I là giao điểm của (d) và trục Oy. Hãy tìm m để A và B đối xứng qua I. Cho đường tròn (O;R) đường kính AB và điểm C thuộc (O) sao cho AC < BC. Tiếp tuyến tại C cắt các tiếp tuyến tại A và B lần lượt tại E và F. Hãy chứng minh rằng tứ giác AECO nội tiếp. Tiếp theo, gọi H là giao điểm của EO và AC. Chứng minh: OH.OE = R^2. Sau đó, BC cắt AB tại D, OD cắt AC tại I, tia DH cắt AB tại K. Gọi P là điểm đối xứng của H qua E. Hãy chứng minh tứ giác AHDP là hình bình hành và IK // AD. Cuối cùng, IK cắt EO tại M. Chứng minh ba điểm A, M, F thẳng hàng. Đây là một bài kiểm tra quan trọng giúp học sinh tự đánh giá kiến thức và kỹ năng của mình, chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát học kỳ 2 Toán 9 năm 2019 - 2020 trường THCS Thanh Xuân Nam - Hà Nội
Ngày … tháng 05 năm 2020, trường THCS Thanh Xuân Nam, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán 9 giai đoạn giữa học kỳ 2 năm học 2019 – 2020. Đề khảo sát học kỳ 2 Toán 9 năm 2019 – 2020 trường THCS Thanh Xuân Nam – Hà Nội gồm 01 trang với 05 bài toán, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề khảo sát học kỳ 2 Toán 9 năm 2019 – 2020 trường THCS Thanh Xuân Nam – Hà Nội : + Cho đường tròn (O) và điểm A cố định ở ngoài (O). Vẽ qua A cát tuyến ABC (B nằm giữa A và C), AM, AN là các tiếp tuyến với (O) (M, N thuộc (O) và M thuộc nửa mặt phẳng bờ AC có chứa O), gọi H là trung điểm của BC. 1) Chứng minh: AM^2 = AB.AC. 2) Chứng minh các điểm A, M, N, O, H cùng thuộc một đường tròn. 3) Đường thẳng qua B song song với AM cắt MN ở E. Chứng minh EH // MC. 4) Khi cát tuyến ABC quay quanh A thì trọng tâm G của tam giác MBC chạy trên đường nào? [ads] + Chiếc nón do làng Chuông (Thanh Oai – Hà Nội) sản xuất là hình nón có đường sinh bằng 30 cm, đường kính bằng 40 cm. Người ta dùng hai lớp lá để phủ lên bề mặt xung quanh của nón. Tính diện tích lá cần dùng làm một chiếc nón. + Một người đi xe đạp từ địa điểm A đến địa điểm B cách nhau 30 km. Khi đi từ B về A người đó chọn con đường khác dễ đi hơn nhưng dài hơn con đường cũ 6 km. Vì đi với vận tốc lớn hơn vận tốc lúc đi là 3 km/h nên thời gian về vẫn ít hơn thời gian đi là 20 phút. Tính vận tốc lúc đi.
Đề khảo sát Toán 9 năm học 2019 - 2020 trường THCS Thành Công - Hà Nội
Thứ Hai ngày 01 tháng 06 năm 2020, trường THCS Thành Công, quận Ba Đình, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2019 – 2020. Đề khảo sát Toán 9 năm học 2019 – 2020 trường THCS Thành Công – Hà Nội gồm 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có 01 trang. Trích dẫn đề khảo sát Toán 9 năm học 2019 – 2020 trường THCS Thành Công – Hà Nội : + Giải bài toán bằng cách lập phương trình: Một phân xưởng theo kế hoạch phải dệt 3000 tấm vải để làm khẩu trang phục vụ các đơn vị tuyến đầu chống dịch. Trong 8 ngày đầu họ đã thực hiện được đúng kế hoạch, những ngày còn lại do nhu cầu cung cấp tăng lên họ đã dệt vượt mức mỗi ngày 10 tấm, nên đã hoàn thành kế hoạch trước 2 ngày. Hỏi theo kế hoạch mỗi ngày phân xưởng phải dệt bao nhiêu tấm vải? [ads] + Một téc nước hình trụ mà phía trong có đường kính đáy là 0,6m và chiều cao 1m. Tính thể tích nước chứa đầy trong 45 téc như vậy? + Cho đường tròn (O; R) và điểm M ở ngoài (O). Qua M kẻ các tiếp tuyến MA, MB với (O) (A, B là các tiếp điểm). Gọi I là trung điểm của MA, BI cắt đường tròn (O) tại điểm thứ hai là C. 1) Chứng minh tứ giác OAMB nội tiếp. 2) Chứng minh IA^2 = IB.IC. 3) Chứng minh CMA = IBM.
Đề khảo sát chất lượng Toán 9 lần 2 trường THCS Nguyễn Tri Phương - Hà Nội
Thứ Hai ngày 01 tháng 06 năm 2020, trường THCS Nguyễn Tri Phương, quận Ba Đình, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 lần thứ hai giai đoạn giữa học kỳ 2 năm học 2019 – 2020. Đề khảo sát chất lượng Toán 9 lần 2 trường THCS Nguyễn Tri Phương – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề có cấu trúc tương tự đề tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo Hà Nội những năm gần đây. Trích dẫn đề khảo sát chất lượng Toán 9 lần 2 trường THCS Nguyễn Tri Phương – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một công nhân dự định làm 33 sản phẩm trong thời gian đã định. Trước khi làm việc xí nghiệp giao thêm cho 29 sản phẩm nữa. Do vậy mặc dù người đó đã làm tăng mỗi giờ 3 sản phẩm song vẫn hoàn thành chậm hơn dự kiến 1 giờ 30 phút. Tính số sản phẩm người công nhân dự định làm trong một giờ (biết rằng mỗi giờ người đó làm không dưới 8 sản phẩm). [ads] + Cho (O) và điểm M nằm ngoài (O). Qua M kẻ tiếp tuyến MA, MB với (O) tại tiếp điểm A, B. Một đường thẳng d đi qua M cắt (O) tại C, D (MC < MD và tia MC nằm giữa hai tia MB, MO). I là điểm chính giữa dây CD. a) Chứng minh: Tứ giác MAOI nội tiếp. b) Chứng minh: MA^2 = MC.MD. c) Cho BI cắt (O) tại điểm thứ hai là E. Chứng minh AE song song với CD và tam giác AED đồng dạng tam giác DAM. d) Qua I kẻ đường thẳng song song với BD cắt AB tại K. Chứng minh CK vuông góc BO. + Từ một miếng tôn hình chữ nhật có kích thước 22cm x 25cm, người ta muốn gò thành mặt xung quanh của cái bình hình trụ (đáy làm từ miếng tôn khác và coi như hao hụt đường nối tạo thành bình hình trụ không đáng kể). Hỏi người ta nên dùng miếng tốn như thế nào để bình có thể đựng được 1 lít nước? Tại sao?
Đề khảo sát Toán 9 vòng 1 năm học 2019 - 2020 trường THCS Ái Mộ - Hà Nội
Thứ Sáu ngày 29 tháng 05 năm 2020, trường THCS Ái Mộ, quận Long Biên, thành phố Hà Nội tổ chức kỳ thi kiểm tra khảo sát chất lượng môn Toán 9 vòng 1 năm học 2019 – 2020. Đề khảo sát Toán 9 vòng 1 năm học 2019 – 2020 trường THCS Ái Mộ – Hà Nội gồm 01 trang với 05 bài toán, thời gian làm bài 90 phút. Trích dẫn đề khảo sát Toán 9 vòng 1 năm học 2019 – 2020 trường THCS Ái Mộ – Hà Nội : + Một máy bơm theo kế hoạch phải bơm đầy nước vào một bể cạn có dung tích 50m trong một thời gian nhất định. Người công nhân vận hành máy đã cho máy bơm hoạt động với công suất tăng thêm 5m3/giờ, cho nên đã bơm đầy bể sớm hơn qui định 1 giờ 40 phút. Hỏi theo kế hoạch, mỗi giờ máy bơm phải bơm được bao nhiêu mét khối nước. [ads] + Một cốc nước có dạng hình trụ có đường kính đáy bằng 6 cm, chiều cao 12 cm và chứa một lượng nước cao 10 cm. Người ta thả từ từ 1 viên bi làm bằng thép đặc (không thấm nước, có thể tích là V = 4pi (cm3) vào trong cốc (hình minh họa). Hỏi mực nước trong cốc lúc này cao bao nhiêu? + Cho một đường tròn (O) với dây BC cố định và một điểm A thay đổi trên cung lớn BC sao cho AC > AB và AC > BC. Gọi D là điểm chính giữa của cung nhỏ BC. Các tiếp tuyến của (O) tại D, C cắt nhau tại một điểm E. Gọi P, Q lần lượt là giao điểm của các cặp đường thẳng AB với CD, AD với CE. a) Chứng minh DE // BC. b) Chứng minh tứ giác PACQ nội tiếp. c) Gọi giao điểm của các dây AD, BC là S. Chứng minh hệ thức 1/CE = 1/CQ + 1/CS.