Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olimpic lớp 6 môn Toán năm 2020 2021 phòng GD ĐT Quốc Oai Hà Nội

Nội dung Đề thi Olimpic lớp 6 môn Toán năm 2020 2021 phòng GD ĐT Quốc Oai Hà Nội Bản PDF - Nội dung bài viết Đề thi Olimpic lớp 6 môn Toán năm 2020-2021 phòng GD ĐT Quốc Oai Hà Nội Đề thi Olimpic lớp 6 môn Toán năm 2020-2021 phòng GD ĐT Quốc Oai Hà Nội Xin chào quý thầy cô và các bạn học sinh lớp 6! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi Olimpic Toán lớp 6 năm 2020-2021 của phòng GD&ĐT Quốc Oai - Hà Nội. Đề thi này bao gồm các câu hỏi thú vị với đáp án và lời giải chi tiết để giúp các em ôn tập hiệu quả. Trích dẫn một số câu hỏi từ đề thi: + Trên quãng đường AB, hai ô tô đi ngược chiều nhau và cùng khởi hành một lúc thì sau 6 giờ sẽ gặp nhau. Biết vận tốc xe đi từ A bằng 4/3 vận tốc xe đi từ B. Hỏi xe đi từ A phải khởi hành sau xe đi từ B bao lâu để hai xe gặp nhau ở chính giữa quãng đường AB? + Cho 5 đường thẳng phân biệt cùng đi qua điểm O. Chứng tỏ rằng: Trong các góc đỉnh O, có ít nhất 2 góc có số đo không lớn hơn 360. + Ta có thể dùng 48 hình vuông giống nhau để tạo thành bao nhiêu hình chữ nhật khác nhau? Ví dụ: và được coi là một hình chữ nhật. Hy vọng rằng đề thi này sẽ giúp các bạn rèn luyện kỹ năng giải toán một cách hiệu quả. Chúc các bạn thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 6 năm 2020 - 2021 phòng GDĐT Anh Sơn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 đề học sinh giỏi huyện Toán 6 năm 2020 – 2021 phòng GD&ĐT Anh Sơn – Nghệ An.
Đề học sinh giỏi huyện Toán 6 năm 2020 - 2021 phòng GDĐT Nam Đàn - Nghệ An
Đề học sinh giỏi huyện Toán 6 năm 2020 – 2021 phòng GD&ĐT Nam Đàn – Nghệ An được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 120 phút. Trích dẫn đề học sinh giỏi huyện Toán 6 năm 2020 – 2021 phòng GD&ĐT Nam Đàn – Nghệ An : + Chứng minh rằng phân số (3n + 1)/(5n + 2) tối giản với mọi số tự nhiên n. + Tìm số tự nhiên a biết rằng a chia cho 7 dư 3; a chia cho 3 dư 1; a chia hết cho 11 và a nằm trong khoảng từ 350 đến 500. + Trên đường thẳng xy lấy một điểm O. Trên tia Oy lấy hai điểm M, N sao cho OM = 3cm, ON = 7cm. a) Tính độ dài đoạn thẳng MN. b) Lấy điểm P thuộc tia Oy sao cho MP = 2cm. Tính độ dài đoạn thẳng OP. c) Trên cùng một nửa mặt phẳng bờ là đường thẳng xy, vẽ hai tia Oz và Ot sao cho xOz = 50° và tOy = a°. Xác định giá trị của a để Oz là tia phân giác của góc xOt.
Đề học sinh giỏi Toán 6 năm 2020 - 2021 phòng GDĐT Cao Lộc - Lạng Sơn
Đề học sinh giỏi Toán 6 năm 2020 – 2021 phòng GD&ĐT Cao Lộc – Lạng Sơn gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề học sinh giỏi Toán 6 năm 2020 – 2021 phòng GD&ĐT Cao Lộc – Lạng Sơn : + So sánh A và B biết. + Một người bán năm giỏ gồm cả xoài và cam. Mỗi giỏ chỉ đựng một loại quả với số lượng là: 65kg; 71kg; 58kg; 72kg; 93kg. Sau khi bán một giỏ cam thì số lượng xoài còn lại gấp ba lần số lượng cam còn lại. Hãy cho biết giỏ nào đựng cam, giỏ nào đựng xoài? + Cho góc AOB và góc BOC là hai góc kề bù. Biết góc BOC bằng năm lần góc AOB. a) Tính số đo mỗi góc. b) Gọi OD là tia phân giác của góc BOC. Tính số đo góc AOD. c) Trên cùng nửa mặt phẳng bờ là đường thẳng AC chứa tia OB, OD; vẽ thêm 2006 tia phân biệt (không trùng với các tia OA; OB; OC; OD đã cho) thì có tất cả bao nhiêu góc?
Đề học sinh giỏi Toán 6 năm 2020 - 2021 phòng GDĐT Yên Định - Thanh Hóa
Đề học sinh giỏi Toán 6 năm 2020 – 2021 phòng GD&ĐT Yên Định – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 02 tháng 02 năm 2021, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi Toán 6 năm 2020 – 2021 phòng GD&ĐT Yên Định – Thanh Hóa : + Cho a là một hợp số, khi phân tích ra thừa số nguyên tố chỉ chứa hai thừa số nguyên tố khác nhau là p1 và p2. Biết a3 có tất cả 40 ước, hỏi a2 có bao nhiêu ước? + Cho đoạn thẳng AB dài 7cm. Trên tia AB lấy điểm I sao cho AI = 4cm. Trên tia BA lấy điểm K sao cho BK = 2cm. a. Chứng tỏ rằng điểm I nằm giữa A và K. b. Tính IK. + Cho 100 điểm trong đó có đúng 3 điểm thẳng hàng, cứ qua hai điểm ta vẽ một đường thẳng. Hỏi có tất cả bao nhiêu đường thẳng?