Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chứng minh tứ giác nội tiếp đường tròn

Tài liệu gồm 19 trang, hướng dẫn phương pháp giải bài toán chứng minh tứ giác nội tiếp đường tròn, đây là dạng toán thường gặp trong chương trình Toán 9 và trong các đề tuyển sinh vào lớp 10 môn Toán. 1. Kiến thức cơ bản : Tứ giác nội tiếp đường tròn là tứ giác có bốn đỉnh nằm trên một đường tròn. Đường tròn đó được gọi là đường tròn ngoại tiếp tứ giác. 2. Các phương pháp chứng minh tứ giác nội tiếp đường tròn : + Phương pháp 1: Chứng minh bốn đỉnh của tứ giác cùng cách đều một điểm. + Phương pháp 2: Chứng minh tứ giác có hai góc đối diện bù nhau (tổng hai góc đối diện bằng 180 độ). + Phương pháp 3: Chứng minh hai đỉnh cùng nhìn đoạn thẳng tạo bởi hai điểm còn lại hai góc bằng nhau. Các bài toán trong tài liệu được sắp xếp theo các mức độ nhận thức: nhận biết, thông hiểu, vận dụng thấp và vận dụng cao; có đáp án và lời giải chi tiết. Trích dẫn tài liệu chứng minh tứ giác nội tiếp đường tròn: + Cho hình thang ABCD (AB CD AB CD) có 0 C D 60 CD AD 2. Chứng minh bốn điểm A B C D cùng thuộc một đường tròn. Hướng dẫn giải: Gọi I là trung điểm CD, ta có IC AB ICBA IC AB là hình hành BC AI (1). Tương tự AD BI (2). ABCD là hình thang có 0 C D 60 nên ABCD là hình thang cân (3). Từ (1), (2), (3) ta có hai tam giác ICB IAD đều hay IA IB IC ID hay bốn điểm A B C D cùng thuộc một đường tròn. + Cho hình thoi ABCD. Gọi O là giao điểm hai đường chéo. M N R và S lần lượt là hình chiếu của O trên AB BC CD và DA. Chứng minh bốn điểm M N R và S cùng thuộc một đường tròn. Do ABCD là hình thoi nên O là trung điểm của AC BD AC BD là phân giác góc A B C D nên MAO SAO NCO PDO OM ON OP OS hay bốn điểm M N R và S cùng thuộc một đường tròn. + Cho tam giác ABC có các đường cao BH và CK. Chứng minh B K H C cùng nằm trên một đường tròn. Xác định tâm đường tròn đó. Hướng dẫn giải: Gọi I là trung điểm CB do CHB CKB vuông tại H K nên IC IB IK IH hay B K H C cùng nằm trên một đường tròn tâm I.

Nguồn: toanmath.com

Đọc Sách

Sơ đồ tư duy lớp 9 môn Toán
Nội dung Sơ đồ tư duy lớp 9 môn Toán Bản PDF - Nội dung bài viết Sytu giới thiệu bộ Sơ đồ tư duy Toán lớp 9: Đại số 9 và Hình học 9 Sytu giới thiệu bộ Sơ đồ tư duy Toán lớp 9: Đại số 9 và Hình học 9 Sytu xin giới thiệu đến quý độc giả bộ sơ đồ tư duy Toán lớp 9, bao gồm cả Đại số 9 và Hình học 9. Học Toán thông qua sơ đồ tư duy là một phương pháp học tập hiện đại, giúp học sinh dễ dàng ghi nhớ và hiểu sâu hơn về các kiến thức Toán. Những kiến thức Toán lớp 9 được biểu diễn trong các hình ảnh sinh động, giúp học sinh nhận ra mối quan hệ logic giữa chúng. Bộ sơ đồ tư duy Toán lớp 9 bao gồm nhiều chủ đề, bao gồm: Sơ đồ tư duy về căn bậc hai và căn bậc ba Sơ đồ tư duy về hàm số Sơ đồ tư duy về tam giác Sơ đồ tư duy về tứ giác Sơ đồ tư duy về đường tròn Qua bộ sơ đồ tư duy Toán lớp 9, học sinh sẽ tiếp cận môn Toán một cách mạch lạc, thú vị hơn, từ đó nâng cao hiệu suất học tập của mình và phát triển tư duy logic và sáng tạo trong việc giải quyết các bài toán. Hãy cùng Sytu trải nghiệm bộ sơ đồ tư duy độc đáo này để khám phá vẻ đẹp và logic của môn Toán!
Tài liệu ôn thi cấp tốc Đại số 9 Huỳnh Đức Khánh
Nội dung Tài liệu ôn thi cấp tốc Đại số 9 Huỳnh Đức Khánh Bản PDF - Nội dung bài viết Tài liệu ôn thi cấp tốc Đại số 9 Huỳnh Đức Khánh Tài liệu ôn thi cấp tốc Đại số 9 Huỳnh Đức Khánh Bạn đang cần một tài liệu ôn thi cấp tốc Đại số 9 để nắm vững kiến thức Toán lớp 9? Tài liệu của chúng tôi có thể đáp ứng nhu cầu của bạn. Với 29 trang tài liệu tuyển chọn các bài tập điển hình trong các nội dung Đại số 9, bạn sẽ được hỗ trợ mạnh mẽ trong việc ôn tập. Nội dung của tài liệu được chia thành 7 phần chính: Phần 1: Rút gọn căn số - Giúp bạn rèn luyện kỹ năng rút gọn căn số một cách nhanh chóng và chính xác. Phần 2: Rút gọn biểu thức - Hướng dẫn cách rút gọn biểu thức để giải bài tập hiệu quả. Phần 3: Hàm số bậc nhất - Bài tập về hàm số bậc nhất giúp bạn hiểu rõ hơn về đồ thị và các tính chất của hàm số. Phần 4: Hệ phương trình bậc nhất hai ẩn - Bài tập hệ phương trình sẽ giúp bạn rèn luyện cách giải các bài toán phức tạp. Phần 5: Hàm số bậc hai - Tập trung vào hàm số bậc hai, giúp bạn hiểu rõ về đồ thị và hình dạng của hàm số. Phần 6: Phương trình bậc hai - Bài tập về phương trình bậc hai để bạn có thể giải các bài toán liên quan đến phương trình. Phần 7: Giải bài toán bằng cách lập phương trình - lập hệ phương trình - Bài tập hướng dẫn giải bài toán bằng cách lập phương trình và lập hệ phương trình trong các tình huống khác nhau như bài toán hình học, bài toán vận tốc, bài toán công nhân làm việc và nhiều bài toán khác. Với tài liệu này, bạn sẽ có cơ hội nắm vững kiến thức và rèn luyện kỹ năng giải bài tập một cách hiệu quả. Hãy tận dụng tài liệu này để chuẩn bị tốt cho kỳ thi của mình!
Chuyên đề giải toán bằng cách lập phương trình, hệ phương trình
Nội dung Chuyên đề giải toán bằng cách lập phương trình, hệ phương trình Bản PDF - Nội dung bài viết Chuyên đề giải toán bằng cách lập phương trình, hệ phương trình Chuyên đề giải toán bằng cách lập phương trình, hệ phương trình Trong tài liệu này, có 26 trang hướng dẫn cách giải các bài toán bằng cách lập phương trình, hệ phương trình trong chương trình Toán lớp 9. Phương pháp giải chung bao gồm ba bước chính: Bước 1. Lập phương trình hoặc hệ phương trình: Đầu tiên, ta cần lập phương trình hoặc hệ phương trình bằng cách chọn ẩn, đơn vị cho ẩn và điều kiện thích hợp cho ẩn. Sau đó, biểu diễn các đại lượng khác theo ẩn và dựa vào điều kiện của bài toán để lập phương trình hoặc hệ phương trình. Bước 2. Giải phương trình hoặc hệ phương trình: Tiếp theo, ta giải phương trình hoặc hệ phương trình đã lập được ở bước 1. Bước 3. Nhận định, so sánh kết quả: Cuối cùng, ta nhận định, so sánh kết quả bài toán và tìm ra kết quả thích hợp, sau đó trả lời bằng câu viết và nêu rõ đơn vị của đáp số. Các dạng toán cơ bản mà bạn sẽ gặp trong tài liệu bao gồm: chuyển động, hình học, công việc làm chung, chảy nước, tìm số, %, và kiến thức vật lý, hóa học. Để giải bài toán bằng cách lập phương trình, hệ phương trình, bạn cần lưu ý một số công thức quan trọng như: quan hệ giữa thời gian t, quãng đường s và vận tốc v, chuyển động tàu thuyền khi có tác động dòng nước, khối lượng công việc A, năng suất lao động N và thời gian làm việc T.
Các dạng toán căn bậc ba Nguyễn Chí Thành
Nội dung Các dạng toán căn bậc ba Nguyễn Chí Thành Bản PDF - Nội dung bài viết Các dạng toán căn bậc ba Nguyễn Chí Thành Các dạng toán căn bậc ba Nguyễn Chí Thành Tài liệu này bao gồm 17 trang tập hợp các bài toán liên quan đến căn bậc ba (hay còn gọi là căn bậc 3) dành cho học sinh lớp 9. Mỗi bài toán được giải chi tiết để giúp học sinh hiểu rõ hơn về chủ đề này. Các dạng toán trong tài liệu bao gồm: Dạng 1: Thực hiện phép tính với căn bậc 3 Dạng 2: Chứng minh các đẳng thức liên quan đến căn bậc 3 Dạng 3: So sánh hai căn bậc 3 với nhau Dạng 4: Giải các phương trình có chứa căn bậc 3 Đây là tài liệu hữu ích giúp học sinh rèn luyện kỹ năng giải toán và nắm vững kiến thức về căn bậc ba. Mong rằng tài liệu sẽ giúp ích cho các em trong quá trình học tập.