Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chinh phục nguyên hàm - tích phân từ A đến Z - Nguyễn Hữu Bắc

Sách gồm 480 trang trình bày chi tiết hầu hết những dạng toán nguyên hàm – tích phân thường gặp trong chương trình Toán 12. Nội dung sách : Chương mở đầu + Mối liên hệ giữa nguyên hàm và tích phân + Ý nghĩa A. Lý thuyết Chương I. Nguyên hàm I. Khái niệm nguyên hàm II. Tính chất nguyên hàm Chương II. Tích phân I. Khái niệm về tích phân II. Tính chất của tích phân III. Các phương pháp tính nguyên hàm – tích phân thường gặp Chương III. Bảng nguyên hàm các hàm số cơ bản Chương IV. Cách tạo dạng tích phân B. Phương pháp tìm nguyên hàm – tích phân Chương I. Phương pháp vi phân Chương II. Phương pháp bảng nguyên hàm Chương III. Phương pháp đổi biến số I. Phương pháp II. Đổi biến số hàm vô tỷ III. Đổi biến hàm đa thức bậc cao IV. Đổi biến hàm lượng giác V. Hàm dưới dấu tích phân chứa các biểu thức bậc nhất của sinx, cosx VI. Đổi biến dựa vào cận Chương IV. Phương pháp tích phân từng phần I. Kỹ thuật chọn hệ số C II. Kỹ thuật tính nhanh III. Phân dạng – phương pháp [ads] C. Nguyên hàm – Tích phân các loại hàm số Chương I. Nguyên hàm – tích phân các hàm đa thức I. Hàm số tìm nguyên hàm II. Phương pháp III. Bài tập vận dụng Chương II. Tích phân hàm hữu tỉ I. Hàm số tìm nguyên hàm II. Phương pháp III. Kỹ thuật nhẩm hệ số trong đồng nhất thức IV. Nguyên tắc giải V. Bài tập áp dụng Chương III. Tích phân hàm vô tỉ Chương IV. Tích phân hàm lượng giác I. Hàm số tìm nguyên hàm II. Phương pháp III. Các công thức lượng giác thường sử dụng IV. Các dạng nguyên hàm lượng giác thường gặp Chương V. Tích phân hàm số mũ – logarit Chương VI. Tích phân hàm trị tuyệt đối Chương VII. Tích phân liên kết Chương VIII. Tích phân trong đề thi đại học từ 2002 đến 2015 Chương IX. Tích phân trong các đề thi thử đại học Chương X. Những bài toán tích phân khó D. Ứng dụng tích phân Chương I. Ứng dụng tích phân để tính diện tích I. Diện tích hình phẳng giới hạn bởi các đường cong II. Diện tích hình tròn III. Diện tích hình Elip Chương II. Ứng dụng tích phân để tính thể tích I. Thể tích V sinh bởi diện tích S (tạo bởi một đường cong với trục) II. Thể tích V sinh bởi diện tích S (tạo bởi từ hai đường cong) Chương III. Sai lầm khi tính tích phân

Nguồn: toanmath.com

Đọc Sách

Trắc nghiệm nguyên hàm, tích phân và ứng dụng trong các đề thi thử Toán 2018
Tài liệu gồm 414 trang tổng hợp các câu hỏi và bài toán trắc nghiệm nguyên hàm, tích phân và ứng dụng trong các đề thi thử Toán 2018, các câu hỏi và bài tập được phân loại theo 4 mức độ nhận thức, được phân tích và giải chi tiết. Trích dẫn tài liệu trắc nghiệm nguyên hàm, tích phân và ứng dụng trong các đề thi thử Toán 2018 : + (THPT Quỳnh Lưu 1 – Nghệ An – Lần 2 năm 2017 – 2018) Thể tích V của khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi đường tròn (C): x^2 + (y – 3)^2 = 1 xung quanh trục hoành là? + (THPT Chuyên Hạ Long – Quảng Ninh lần 2 năm 2017 – 2018) Cho hình phẳng (H) giới hạn bởi đồ thị của hai hàm số f1(x) và f2(x) liên tục trên đoạn [a; b] và hai đường thẳng x = a, x = b (tham khảo hình vẽ dưới). Công thức tính diện tích của hình (H) là? [ads] + (THPT Mộ Đức-Quảng Ngãi – lần 1 năm 2017 – 2018) Trong hệ trục tọa độ Oxy, cho parabol (P): y = x^2 và hai đường thẳng y = a, y = b (0 < a < b) (hình vẽ). Gọi S1 là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng y = a (phần tô đen); S2 là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng y = b (phần gạch chéo). Với điều kiện nào sau đây của a và b thì S1 = S2?
Hướng dẫn giải tích phân vận dụng cao trong đề thi THPTQG 2018
Tài liệu gồm 43 tuyển tập 120 câu trắc nghiệm tích phân vận dụng cao có lời giải chi tiết được trích từ các đề thi thử môn Toán năm 2018. Các bài toán được chia thành 13 vấn đề: + Vấn đề 1. Tính tích phân theo định nghĩa + Vấn đề 2. Kỹ thuật đổi biến + Vấn đề 3. Kỹ thuật tích phân từng phần + Vấn đề 4. Tính a, b, c trong tích phân + Vấn đề 5. Tính tích phân hàm phân nhánh + Vấn đề 6. Tính tích phân dựa vào tính chất + Vấn đề 7. Kỹ thuật phương trình hàm + Vấn đề 8. Kỹ thuật biến đổi + Vấn đề 9. Kỹ thuật đạo hàm đúng + Vấn đề 10. Kỹ thuật đưa về bình phương loại 1 + Vấn đề 11. Kỹ thuật đưa về bình phương loại 2 – Kỹ thuật Holder + Vấn đề 12. Kỹ thuật đánh giá AM – GM + Vấn đề 13. Tìm GTLN-GTNN của tích phân
Tuyển tập câu hỏi trắc nghiệm nguyên hàm - tích phân dùng Casio
Tài liệu gồm 62 trang hướng dẫn giải nhanh các bài toán trắc nghiệm nguyên hàm – tích phân bằng máy tính Casio, tài liệu do các thầy, cô giáo trong nhóm nhóm Casio – Latex biên tập. 1. Nguyên hàm các hàm hữu tỉ – Thầy Lê Anh Dũng a. Phương pháp bấm máy b. Các ví dụ 2. Nguyên hàm các hàm hữu tỉ – Thầy Dương Bùi Đức a. Cơ sở lí thuyết giải nguyên hàm hữu tỷ b. Thực hiện phép chia đa thức – Sử dụng máy tính Vinacal 570 es plus II 3. Nguyên hàm dạng tìm hệ số C – Thầy Phan Minh Tâm 4. Nguyên hàm dạng cho f(x) và F(a). Tính F(b) [ads] 5. Tích phân dạng đặc biệt – Thầy Huỳnh Văn Quy 6. Tích phân hàm hữu tỉ – Thầy Triệu Minh Hà 7. Tích phân của hàm lượng giác – Thầy Nguyễn Hữu Nhanh Tiến 8. Đổi biến chứa e^x – Thầy Nguyễn Vân Trường 9. Tích Phân Casio liên quan đến lnx – Thầy Nguyễn Tài Tuệ 10. Tích phân từng phần – Thầy Trần Hiếu
1287 bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án trong các đề thi thử môn Toán
Tài liệu gồm 202 trang tổng hợp 1287 bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án trong các đề thi thử môn Toán, tài liệu được biên soạn bởi thầy Trần Văn Tài nhằm giúp học sinh có tài liệu tham khảo ôn thi THPT Quốc gia 2018 môn Toán. Nội dung tài liệu : + 414 bài tập trắc nghiệm nguyên hàm có đáp án + 451 bài tập trắc nghiệm tích phân có đáp án + 422 bài tập trắc nghiệm ứng dụng của nguyên hàm – tích phân có đáp án [ads] Các bài tập trong tài liệu được tuyển chọn với nhiều dạng bài khác nhau, với đầy đủ các mức độ dễ – khó thích hợp cho nhiều đối tượng học sinh, giúp các em nắm được các dạng toán nguyên hàm, tích phân và ứng dụng có thể xuất hiện trong đề thi.