Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Long Biên - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND quận Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 08 tháng 05 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 phòng GD&ĐT Long Biên – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Khoảng cách giữa hai bến sông C và D là 48 km. Một ca nô đi xuôi dòng từ bến C đến bến D, nghỉ 24 phút rồi đi ngược dòng quay lại bến C. Kể từ lúc khởi hành đến khi về tới bến C hết tất cả 4 giờ. Tìm vận tốc của ca nô trong nước yên lặng, biết rằng vận tốc nước chảy là 3 km/h. + Một hình nón có độ dài đường sinh bằng 25 cm và bán kính đáy bằng 15 cm. Tính thể tích của hình nón đó (lấy pi = 3,14). + Trong mặt phẳng Oxy, cho parabol (P): y = -x2 và đường thẳng (d): y = (m + 1)x – 3. a) Với giá trị nào của m thì parabol (P) cắt đường thẳng (d) tại hai điểm phân biệt? b) Tìm các giá trị của m để parabol (P) cắt đường thẳng (d) tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn |x1 – x2| = 4.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng lớp 9 môn Toán năm 2018 trường THPT chuyên Hà Nội Amsterdam
Nội dung Đề khảo sát chất lượng lớp 9 môn Toán năm 2018 trường THPT chuyên Hà Nội Amsterdam Bản PDF - Nội dung bài viết Đề khảo sát chất lượng Toán lớp 9 trường THPT chuyên Hà Nội Amsterdam năm 2018 Đề khảo sát chất lượng Toán lớp 9 trường THPT chuyên Hà Nội Amsterdam năm 2018 Đề khảo sát chất lượng môn Toán lớp 9 năm 2018 tại trường THPT chuyên Hà Nội - Amsterdam đượm thiết kế gồm 5 bài toán tự luận trên 1 trang giấy. Bài thi nhằm mục đích đánh giá kiến thức của học sinh ở giai đoạn giữa học kỳ 2 năm học 2017 - 2018. Đồng thời, bài thi cũng mang lại cơ hội cho học sinh thử sức, rèn luyện và chuẩn bị cho kỳ thi vào lớp 10 năm học 2018 - 2019 môn Toán. Đề thi đi kèm với lời giải chi tiết giúp học sinh hiểu rõ hơn về từng bài toán và cải thiện kỹ năng giải bài toán của mình.