Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề cộng, trừ đa thức một biến

Nội dung Chuyên đề cộng, trừ đa thức một biến Bản PDF - Nội dung bài viết Chuyên đề cộng, trừ đa thức một biến Chuyên đề cộng, trừ đa thức một biến Chuyên đề này bao gồm 08 trang tài liệu, tập trung vào lý thuyết cơ bản về cách cộng, trừ đa thức một biến. Bên cạnh đó, tài liệu cũng cung cấp các dạng toán và bài tập thực hành, kèm theo đáp án và lời giải chi tiết. Được thiết kế nhằm hỗ trợ học sinh lớp 7 trong quá trình học tập môn Toán, đặc biệt là phần Đại số chương 4: Biểu thức đại số. Mục tiêu của chuyên đề này là giúp học sinh: Hiểu và nắm vững cách cộng, trừ đa thức theo hàng ngang và theo hàng dọc. Thực hiện được cộng, trừ đa thức theo hàng ngang và theo hàng dọc. Phần lý thuyết trọng tâm của tài liệu giải thích các khái niệm cơ bản và phương pháp tính toán cộng, trừ đa thức một biến. Các dạng bài tập đa dạng giúp học sinh nắm vững kiến thức và có cơ hội luyện tập thêm. Đáp án và lời giải chi tiết giúp học sinh tự kiểm tra và tự ôn tập sau khi giải bài tập. Cụ thể, trong tài liệu sẽ gồm: Lí thuyết trọng tâm Các dạng bài tập, bao gồm: Dạng 1: Tính tổng hoặc hiệu của hai đa thức. Dạng 2: Tìm đa thức chưa biết trong một đẳng thức. Đây sẽ là tài liệu hữu ích giúp học sinh lớp 7 rèn luyện kiến thức và kỹ năng cộng, trừ đa thức một biến một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề sự đồng quy của ba trung tuyến, ba đường phân giác trong một tam giác Toán 7
Tài liệu gồm 56 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề sự đồng quy của ba trung tuyến, ba đường phân giác trong một tam giác trong chương trình môn Toán 7. CHUYÊN ĐỀ 1 . SỰ ĐỒNG QUY CỦA BA ĐƯỜNG TRUNG TUYẾN TRONG MỘT TAM GIÁC. PHẦN I. TÓM TẮT LÍ THUYẾT. PHẦN II. CÁC DẠNG BÀI. Dạng 1. Sử dụng tính chất trọng tâm của tam giác. – Sử dụng linh hoạt các tỉ số liên quan đến trọng tâm tam giác. Dạng 2. Chứng minh một điểm là trọng tâm của tam giác. – Để chứng minh một điểm là trọng tâm của tam giác, ta có thể dùng một trong hai cách sau: + Chứng minh điểm đó là giao điểm của hai đường trung tuyến trong tam giác. + Chứng minh điểm đó thuộc một đường trung tuyến của tam giác và thỏa mãn một trong các tỉ lệ về tính chất trọng tâm của tam giác. Dạng 3. Vấn đề đường trung tuyến trong tam giác vuông, tam giác cân, tam giác đều. – Chú ý những tính chất của tam giác vuông, tam giác cân, tam giác đều. PHẦN III. BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 2 . SỰ ĐỒNG QUY CỦA BA ĐƯỜNG PHÂN GIÁC TRONG MỘT TAM GIÁC. PHẦN I. TÓM TẮT LÍ THUYẾT. PHẦN II. CÁC DẠNG BÀI. Dạng 1. Chứng minh đoạn thẳng bằng nhau, góc bằng nhau, tính độ dài đoạn thẳng, số đo góc. – Sử dụng các tính chất: + Giao điểm của hai đường phân giác của hai góc trong tam giác nằm trên đường phân giác của góc thứ ba. + Giao điểm của các đường phân giác của một tam giác cách đều ba cạnh của tam giác. + Tổng ba góc trong một tam giác bằng 180 độ. Dạng 2. Chứng minh ba đường đồng quy, ba điểm thẳng hàng. – Sử dụng các tính chất: + Giao điểm của hai đường phân giác của hai góc trong tam giác nằm trên đường phân giác của góc thứ ba. + Giao điểm của các đường phân giác của một tam giác cách đều ba cạnh của tam giác. Dạng 3. Đường phân giác đối với tam giác đặc biệt (tam giác cân, tam giác đều). – Sử dụng tính chất: trong tam giác cân, đường phân giác của góc ở đỉnh cũng đồng thời là đường trung tuyến, đường cao. Dạng 4. Chứng minh mối quan hệ giữa các góc. – Vận dụng các tính chất tia phân giác của một góc để tìm mối liên hệ giữa các góc. – Dùng định lí tổng ba góc trong một tam giác bằng 180 độ. PHẦN III. BÀI TẬP TỰ LUYỆN.
Chuyên đề quan hệ giữa ba cạnh của một tam giác Toán 7
Tài liệu gồm 18 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa ba cạnh của một tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Khẳng định có tồn tại hay không một tam giác biết độ dài ba cạnh. + Tồn tại một tam giác có độ dài ba cạnh là abc nếu: a b c b a c c a b hoặc b c a b c. + Trong trường hợp xác định được a là số lớn nhất trong ba số abc thì điều kiện để tồn tại tam giác chỉ cần: a b c. Dạng 2 . Chứng minh các bất đẳng thức về độ dài. Sử dụng bất đẳng thức tam giác và các biến đổi về bất đẳng thức tam giác. + Cộng cùng một số vào hai vế của bất đẳng thức: a b a c b c. + Cộng từng vế hai bất đẳng thức cùng chiều: a b a c b. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề quan hệ giữa đường vuông góc và đường xiên Toán 7
Tài liệu gồm 20 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa đường vuông góc và đường xiên trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Nhận biết đường vuông góc, đường xiên. Tìm khoảng cách của một điểm đến một đường thẳng. – Dựa vào khái niệm đường vuông góc, đường xiên để nhận biết các loại đường đó. – Tính khoảng cách từ một điểm đến một đường thẳng chính là tính độ dài đường vuông góc kẻ từ điểm đó đến đường thẳng. Dạng 2 . Quan hệ giữa đường vuông góc và đường xiên. – Sử dụng định lý đường vuông góc ngắn hơn đường xiên (từ một điểm đến cùng một đường thẳng). PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác Toán 7
Tài liệu gồm 20 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. So sánh các góc trong một tam giác. + TH1: Nếu các góc cần so sánh nằm trong cùng một tam giác thì ta áp dụng định lí 1: So sánh các cạnh đối diện với các góc đó. + TH2: Nếu các góc cần so sánh không cùng nằm trong cùng một tam giác thì ta dùng góc trung gian để so sánh. Dạng 2. So sánh các cạnh trong một tam giác. + TH1: Nếu các cạnh cần so sánh nằm trong cùng một tam giác thì ta áp dụng định lí 2: So sánh các góc đối diện với các cạnh đó. + TH2: Nếu các góc cần so sánh không cùng nằm trong cùng một tam giác thì ta dùng góc trung gian để so sánh. PHẦN III . BÀI TẬP TỰ LUYỆN.