Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra cuối học kỳ 1 Toán 11 năm 2023 - 2024 sở GDĐT Kiên Giang

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 1 môn Toán 11 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Kiên Giang; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận mã đề 001 002 003 004. Trích dẫn Đề kiểm tra cuối học kỳ 1 Toán 11 năm 2023 – 2024 sở GD&ĐT Kiên Giang : + Cho hình vuông cạnh 1024 cm. Chia hình vuông đó thành bốn hình vuông nhỏ bằng nhau, sau đó tô màu hình vuông nhỏ góc dưới bên trái (tham khảo hình vẽ). Lặp lại các thao tác này với hình vuông nhỏ góc trên bên phải. Giả sử quá trình trên tiếp diễn vô hạn lần. Gọi 1 u 2 u 3 u … lần lượt là độ dài cạnh của các hình vuông được tô màu. Tính 8 u. + Số giờ có ánh sáng mặt trời của một thành phố A ở vĩ độ 40 bắc trong ngày thứ t của một năm không nhuận được cho bởi hàm số 3sin 80 12 182 d t với t 0 365 t. Vào ngày nào trong năm thì thành phố A có ít giờ có ánh sáng mặt trời nhất? (tham khảo bảng sau cho biết số ngày của mỗi tháng trong năm không nhuận). + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm của cạnh SB. a) Chứng minh rằng đường thẳng OM song song với mặt phẳng SAB. b) Gọi G là trọng tâm của tam giác SCD và H là giao điểm của đường thẳng OG với mặt phẳng SAD. Chứng minh rằng đường thẳng SH song song với đường thẳng AD.

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Thủ Khoa Huân - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Thủ Khoa Huân, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Thủ Khoa Huân – TP HCM : + Cho A = {0; 1; 2; 3; 4; 5; 6; 7}. a/ Có thể lập được bao nhiêu số có 4 chữ số khác nhau? b/ Có thể lập được bao nhiêu số có 4 chữ số khác nhau và chia hết cho 5? c/ Gọi S là tập các số có bốn chữ số khác nhau được lập từ tập A. Lấy ngẫu nhiên một số từ tập S, tính xác suất số lấy được là một số chia hết cho 4. + Giải các phương trình lượng giác sau. + Tìm số hạng không chứa x trong khai triển (x2 – 1/x4)^12.
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Trần Nhân Tông - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Trần Nhân Tông, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Trần Nhân Tông – TP HCM : + Từ 5 chữ số 1, 3, 4, 5, 7 có thể tạo thành bao nhiêu số có 4 chữ số trong mỗi trường hợp sau: a) Bốn chữ số đôi một khác nhau. b) Chữ số 1 có mặt 2 lần, các chữ số còn lại có mặt nhiều nhất 1 lần. + Tìm hệ số của số hạng chứa x^4 trong khai triển của biểu thức (1 + 2x)^6. + Tìm hệ số của số hạng chứa x4y4 trong khai triển của biểu thức (x2 + 1)(3x – 2y)^6.
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Trần Hữu Trang - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Trần Hữu Trang, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Trần Hữu Trang – TP HCM : + Bình A chứa 3 quả cầu xanh, 4 quả cầu đỏ và 5 quả cầu trắng. Bình B chứa 4 quả cầu xanh, 3 quả cầu đỏ và 6 quả cầu trắng. Bình C chứa 5 quả cầu xanh, 5 quả cầu đỏ và 2 quả cầu trắng. Từ mỗi bình lấy ra một quả cầu. Có bao nhiêu cách lấy để cuối cùng được 3 quả có màu giống nhau. + Cho 100 tấm thẻ được đánh số từ 1 đến 100, chọn ngẫu nhiên 3 tấm thẻ. Tính xác suất để chọn được 3 tấm thẻ có tổng các số ghi trên thẻ là số chia hết cho 2. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của SA, BC, CD. a. Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD). b. Tìm giao điểm E của đường thẳng SB và mặt phẳng (MNP). c. Chứng minh rằng NE vuông góc (SAP).
Đề thi HK1 Toán 11 năm học 2019 - 2020 sở GDĐT Quảng Nam
Thứ Hai ngày 06 tháng 01 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Nam tổ chức kiểm tra chất lượng học kỳ 1 môn Toán lớp 11 năm học 2019 – 2020. Đề thi HK1 Toán 11 năm học 2019 – 2020 sở GD&ĐT Quảng Nam mã đề 101 gồm có 02 trang với 15 câu trắc nghiệm và 03 câu tự luận, thời gian học sinh làm bài là 60 phút, đề thi có đáp án và lời giải chi tiết các mã đề 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124. Trích dẫn đề thi HK1 Toán 11 năm học 2019 – 2020 sở GD&ĐT Quảng Nam : + Trong không gian cho đường thẳng a và mặt phẳng (α) song song với nhau. Phát biểu nào sau đây sai? A. Có duy nhất một mặt phẳng chứa đường thẳng a và song song với (α). B. Trong mặt phẳng (α) có duy nhất một đường thẳng song song với đường thẳng a. C. Nếu một mặt phẳng (β) chứa đường thẳng a và cắt (α) theo giao tuyến b thì b song song với a. D. Trong mặt phẳng (α) có vô số đường thẳng chéo nhau với đường thẳng a. + Một công ty nhận được 50 hồ sơ xin việc của 50 người khác nhau muốn xin việc vào công ty, trong đó có 20 người biết tiếng Anh, 17 người biết tiếng Pháp và 18 người không biết cả tiếng Anh và tiếng Pháp. Công ty cần tuyển 5 người biết ít nhất một thứ tiếng Anh hoặc Pháp. Tính xác suất để trong 5 người được chọn có 3 người biết cả tiếng Anh và tiếng Pháp? [ads] + Cho hình chóp S.ABCD có đáy là hình bình hành, G là trọng tâm tam giác SAD, M là trung điểm của AB. a) Chứng minh AD // (SBC). b) Tìm giao tuyến của hai mặt phẳng (SGM) và (SAC). c) Gọi (α) là mặt phẳng chứa GM và song song với AC, (α) cắt SD tại E. Tính tỉ số SE/SD. + Một thầy giáo có 20 quyển sách khác nhau gồm 7 quyển sách Toán, 5 quyển sách Lí và 8 quyển sách Hóa. Thầy chọn ra 9 quyển sách để tặng cho học sinh. Hỏi thầy giáo đó có bao nhiêu cách chọn sao cho số sách còn lại của thầy có đủ 3 môn? + Một hộp đựng 5 quả cầu đỏ và 8 quả cầu vàng (các quả cầu có bán kính khác nhau). Hỏi có bao nhiêu cách chọn ra 3 quả cầu cùng màu từ hộp trên?