Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Hà Tĩnh

Nội dung Đề thi học sinh giỏi tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi tỉnh lớp 9 môn Toán năm 2022 - 2023 Đề thi học sinh giỏi tỉnh lớp 9 môn Toán năm 2022 - 2023 Chào mừng quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2022 - 2023 tổ chức bởi Sở Giáo dục và Đào tạo tỉnh Hà Tĩnh. Đề thi bao gồm 01 trang với 10 bài toán dạng ghi kết quả và 03 bài toán dạng tự luận, thời gian làm bài 120 phút, có đáp án và lời giải chi tiết do thầy giáo Nguyễn Ngọc Hùng - giáo viên Toán trường THCS Hoàng Xuân Hãn, huyện Đức Thọ, tỉnh Hà Tĩnh thực hiện. Kỳ thi sẽ diễn ra vào thứ Ba ngày 10 tháng 01 năm 2023. Hãy cùng nhau chuẩn bị và cố gắng để thể hiện tài năng của mình trong bài thi sắp tới. Dưới đây là một số câu hỏi mẫu trong đề thi: + Tìm giá trị của tham số m sao cho hình chiếu vuông góc M của góc tọa độ O trên đường thẳng y = (m + 2)x + m - 5 đạt giá trị lớn nhất. + Tính diện tích lớn nhất của hình chữ nhật DEFG nội tiếp tam giác ABC vuông tại A với 4AB = 3AC và BC = 25. + Tính BM, AN theo bán kính R của nửa đường tròn, sau đó chứng minh rằng EF song song với AB và BH OK = OE.AB. Cùng nhau học tập và chinh phục niềm đam mê Toán, chúc các em học sinh thành công!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào sáng thứ Ba ngày 15 tháng 11 năm 2022. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Thanh Trì – Hà Nội : + Tìm tất cả số nguyên tố p có dạng p = a2 + b2 + c2 với a, b, c là các số nguyên dương thỏa mãn (a4 + b4 + c4) chia hết cho p. + Cho hình vuông MNPQ. Gọi A là điểm bất kì trên cạnh PQ (điểm A không trùng với hai điểm P, Q). Đường thẳng MA cắt đường thẳng NP tại điểm B. Qua M vẽ đường thẳng vuông góc với MA, cắt đường thẳng PQ tại C. 1. Chứng minh rằng 1/MA2 + 1/MB2 không đổi. 2. Gọi D, E lần lượt là hình chiếu của Q trên MA, MC. F là trung điểm AC. I là giao điểm của MF và DE. Chứng minh rằng: 1/MI = 1/QA + 1/QC. 3. Chứng minh rằng: cosACM = sinACB.cosABC + sinABC.cosACB. + Bên trong hình vuông có cạnh bằng 1 lấy n điểm phân biệt. Chứng minh rằng tồn tại một tam giác có đỉnh là đỉnh của hình vuông hoặc n điểm đó sao cho diện tích S của nó thỏa mãn bất đẳng thức: S ≤ 1/2(n + 1).
Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Tương Dương - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tương Dương, tỉnh Nghệ An; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Tương Dương – Nghệ An : + Với a, b là các số nguyên. Chứng minh rằng nếu 4a2 + 3ab − 11b2 chia hết cho 5 thì a4 − b4 chia hết cho 5. + Cho hình vuông ABCD điểm N trên cạnh AB. Gọi E là giao điểm của CN và DA. Kẻ tia Cx vuông góc với CE cắt AB tại F, M là trung điểm của đoạn thẳng EF. Chứng minh rằng: a) CE = CF b) ACE = BCM c) Khi điểm N di chuyển trên cạnh AB (N không trùng với A và B) thì M chuyển động trên một đường thẳng cố định. + Cho a, b là hai số dương thỏa mãn a + b >= 1. Tìm giá trị nhỏ nhất của biểu thức: F = (a3 + b3)2 + (a2 + b2) + 3/2ab.
Đề chọn HSG Toán 9 năm 2022 - 2023 phòng GDĐT Quảng Trạch - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra định kỳ chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quảng Trạch, tỉnh Quảng Bình; kỳ thi được diễn ra vào ngày 11 tháng 11 năm 2022. Trích dẫn Đề chọn HSG Toán 9 năm 2022 – 2023 phòng GD&ĐT Quảng Trạch – Quảng Bình : + Cho tam giác ABC vuông tại A có đường cao AH (AB < AC và H thuộc BC). Trên tia HC lấy điểm D sao cho HA = HD. Qua D kẻ đường thẳng vuông góc với BC cắt AC tại E. a) Chứng minh rằng BEC và ADC đồng dạng, từ đó suy ra số đo góc AEB. b) Gọi M là trung điểm của BE. Tính số đo góc AHM. c) Tia AM cắt BC tại G. Chứng minh GB/BC = HD/(AH + HC). + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O), hai đường cao BE, CF cắt nhau tại H. Tia AO cắt đường tròn (O) tại D. a) Chứng minh các điểm B, C, E, F thuộc một đường tròn. b) Gọi M là trung điểm của BC, tia AM cắt HO tại G. Chứng minh G là trọng tâm của tam giác ABC. + Cho n là số nguyên dương. Chứng minh rằng nếu 2n + 1 và 3n + 1 là các số chính phương thì 5n + 3 không phải là số nguyên tố.
Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Tây Hòa - Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tây Hòa, tỉnh Phú Yên; kỳ thi được diễn ra vào ngày 08 tháng 11 năm 2022. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Tây Hòa – Phú Yên : + Cho ba số tự nhiên a, b, c. Biết rằng 7a + 2b – 5c chia hết cho 11. Chứng minh rằng 3a – 7b + 12c cũng chia hết cho 11. + Cho hình vuông ABCD. M là một điểm tuỳ ý trên đường chéo BD. Kẻ ME vuông góc AB, MF vuông góc AD. a) Chứng minh: DE = CF và DE vuông góc CF; b) Chứng minh ba đường thẳng DE, BF và CM đồng quy; c) Xác định vị trí điểm M trên BD để diện tích tứ giác AEMF lớn nhất. + Gọi I là điểm nằm trong ABC, các đường thẳng AI, BI, CI lần lượt cắt BC, CA, AB tại M, N, P. Chứng minh rằng: AI/IM = AN/NC + AP/PB.