Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL thi THPTQG 2020 môn Toán lần 3 trường THPT Yên Lạc 2 - Vĩnh Phúc

Nhằm chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán do Bộ Giáo dục và Đào tạo tổ chức, ngày … tháng 05 năm 2020, trường THPT Yên Lạc 2, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng ôn thi THPT Quốc gia môn Toán năm học 2019 – 2020 lần thi thứ ba. Đề KSCL thi THPTQG 2020 môn Toán lần 3 trường THPT Yên Lạc 2 – Vĩnh Phúc được biên soạn bám sát cấu trúc đề tham khảo tốt nghiệp THPT 2020 môn Toán, đề thi có đáp án. Trích dẫn đề KSCL thi THPTQG 2020 môn Toán lần 3 trường THPT Yên Lạc 2 – Vĩnh Phúc : + Một viên phấn bảng có dạng một khối trụ với bán kính đáy bằng 0,5cm, chiều dài 6cm. Người ta làm một hình hộp chữ nhật bằng carton đựng các viên phấn đó với kích thước 6cm x 5cm x 6cm. Hỏi cần ít nhất bao nhiêu hộp kích thước như trên để xếp 460 viên phấn? + Cho hàm số y = (2x – 1)/(2x – 2) có đồ thị là (C). Gọi M(x0;y0) (với x0 > 1) là điểm thuộc (C), biết tiếp tuyến của (C) tại M cắt tiệm cận đứng và tiệm cận ngang lần lượt tại A và B sao cho S OIB = 8S OIA (trong đó O là gốc tọa độ, I là giao điểm hai tiệm cận). Tính S = x0 – 4y0. [ads] + Cắt khối trụ bởi một mặt phẳng qua trục ta được thiết diện là hình chữ nhật ABCD có AB và CD thuộc hai đáy của hình trụ, AB = 6a, AC = 10a. Tính thể tích khối trụ. + Cho hàm số y = f(x) có đồ thị đạo hàm y = f'(x) (như hình vẽ). Gọi S là tập tất cả các giá trị nguyên của tham số m thuộc khoảng (-5;5) sao cho hàm số y = f(x) – mx + 2020 có đúng một điểm cực trị. Tổng tất cả các phần tử của S bằng? + Tính thể tích của vật thể giới hạn bởi hai mặt phẳng x = 1 và x = 3, biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x (1 ≤ x ≤ 3) thì được thiết diện là hình chữ nhật có hai cạnh là 3x và √(3x^2 – 2).

Nguồn: toanmath.com

Đọc Sách

Đề thi KSCL Toán 12 lần 1 năm 2020 - 2021 trường THPT Liễn Sơn - Vĩnh Phúc
Đề thi KSCL Toán 12 lần 1 năm học 2020 – 2021 trường THPT Liễn Sơn – Vĩnh Phúc mã đề 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian giáo viên coi thi phát đề), đề thi có đáp án. Trích dẫn đề thi KSCL Toán 12 lần 1 năm 2020 – 2021 trường THPT Liễn Sơn – Vĩnh Phúc : + Một cửa hàng bán bưởi Đoan Hùng của Phú Thọ với giá bán mỗi quả là 50.000 đồng. Với giá bán này thì của hàng chỉ bán được khoảng 40 quả bưởi. Cửa hàng này dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm mỗi quả 5000 đồng thì số bưởi bán được tăng thêm là 50 quả. Xác định giá bán để của hàng đó thu được lợi nhuận lớn nhất, biết rằng giá nhập về ban đầu mỗi quả là 30.000 đồng. + Chọn khẳng định sai: A. Mỗi đỉnh của khối đa diện là đỉnh chung của ít nhất 3 mặt. B. Hai mặt bất kì của khối đa diện luôn có ít nhất một điểm chung. C. Mỗi mặt của khối đa diện có ít nhất ba cạnh. D. Mỗi cạnh của khối đa diện là cạnh chung của đúng 2 mặt của khối đa diện. + Cho tứ diện ABCD có AB = CD. Mặt phẳng (a) qua trung điểm của AC và song song với AB, CD cắt ABCD theo thiết diện là: A. Hình vuông B. Hình thoi C. Hình tam giác D. Hình chữ nhật.
Đề khảo sát chất lượng lần 1 Toán 12 năm 2020 - 2021 trường Quế Võ 1 - Bắc Ninh
Đề khảo sát chất lượng lần 1 Toán 12 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh mã đề 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 101, 239, 353, 477, 593, 615, 737, 859, 971, 193, 275, 397. Trích dẫn đề khảo sát chất lượng lần 1 Toán 12 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh : + Cho hàm số f(x) liên tục trên R và hàm số f'(x) có bảng biến thiên như sau. Tìm mệnh đề đúng? A. Hàm số y = f(x) có 2 điểm cực tiểu và 1 điểm cực đại. B. Hàm số y = f(x) có 1 điểm cực tiểuvà 1 điểm cực đại. C. Hàm số không có giá trị lớn nhất và không có giá trị nhỏ nhất. D. Hàm số y = f(x) có 1 điểm cực tiểu và 2 điểm cực đại. + Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn x^2 + y^2 – 2x – 4y – 11 = 0. Tìm bán kính của đường tròn (C’) là ảnh của đường tròn (C) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số k = −2020 và phép tịnh tiến theo véctơ v = (2019;2020) là? + Cho một hình nón đỉnh S có độ dài đường sinh bằng 10cm, bán kính đáy bằng 6cm. Cắt hình nón đã cho bởi một mặt phẳng song song với mặt phẳng chứa đáy được một hình nón (N) đỉnh S có chiều cao bằng 16/5 cm. Tính diện tích xung quay của khối nón (N).
Đề khảo sát chất lượng Toán 12 lần 1 năm 2020 - 2021 trường THPT chuyên Hưng Yên
Ngày … tháng 12 năm 2020, trường THPT chuyên Hưng Yên, tỉnh Hưng Yên tổ chức kỳ thi kiểm tra đánh giá chất lượng lớp 12 môn Toán năm học 2020 – 2021 lần thứ nhất. Đề khảo sát chất lượng Toán 12 lần 1 năm 2020 – 2021 trường THPT chuyên Hưng Yên được biên soạn theo dạng đề trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề). Trích dẫn đề khảo sát chất lượng Toán 12 lần 1 năm 2020 – 2021 trường THPT chuyên Hưng Yên : + Một loại thuốc được dùng cho một bệnh nhân và nồng độ thuốc trong máu của bệnh nhân được giám sát bởi bác sĩ. Biết rằng nồng độ thuốc trong máu của bệnh nhân sau khi tiêm vào cơ thể trong t giờ được cho bởi công thức c(t) = t/(t^2 + 1) (mg / L). Sau khi tiêm thuốc bao lâu thì nồng độ thuốc trong máu của bệnh nhân cao nhất? + Gọi d là đường thẳng đi qua A(2;0) có hệ số góc m (m > 0) cắt đồ thị (C): y = -x^3 + 6x^2 – 9x + 2 tại ba điểm phân biệt A, B, C. Gọi B’, C’ lần lượt là hình chiếu vuông góc của B, C lên trục tung. Biết rằng hình thang BB’C’C có diện tích bằng 8, giá trị của m thuộc khoảng nào sau đây? + Cho một đa giác đều có 18 đỉnh nội tiếp đường tròn tâm O. Gọi X là tập hợp tất cả các tam giác có 3 đỉnh trùng với 3 trong số 18 đỉnh của đa giác đã cho. Chọn 1 tam giác trong tập hợp X. Xác suất để tam giác được chọn là tam giác cân bằng?
Đề khảo sát Toán 12 lần 1 năm 2020 - 2021 trường THPT Lương Tài - Bắc Ninh
Chủ Nhật ngày 29 tháng 11 năm 2020, trường THPT Lương Tài, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng môn Toán đối với học sinh khối 12 năm học 2020 – 2021 lần thứ nhất. Đề khảo sát Toán 12 lần 1 năm 2020 – 2021 trường THPT Lương Tài – Bắc Ninh gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề khảo sát Toán 12 lần 1 năm 2020 – 2021 trường THPT Lương Tài – Bắc Ninh : + Người ta cần xây một bể chứa nước sản xuất dạng khối hộp chữ nhật không nắp có thể tích bằng 200 m3. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng. Chi phí để xây bể là 300 nghìn đồng/m2 (chi phí được tính theo diện tích xây dựng, bao gồm diện tích đáy và diện tích xung quanh, không tính chiều dày của đáy và diện tích xung quanh, không tính chiều dày của đáy và thành bể). Hãy xác định chi phí thấp nhất để xây bể (làm tròn đến đơn vị triệu đồng). + Trong hình chóp đều, khẳng định nào sau đây đúng? A. Tất cả các cạnh bên bằng nhau. B. Tất cả các mặt bằng nhau. C. Tất cả các cạnh bằng nhau. D. Một cạnh đáy bằng cạnh bên. + Trong các mệnh đề sau mệnh đề nào đúng? A. Mỗi hình đa diện có ít nhất bốn đỉnh. B. Mỗi hình đa diện có ít nhất ba đỉnh. C. Số đỉnh của một hình đa diện lớn h n hoặc bằng số cạnh của nó. D. Số mặt của một hình đa diện lớn h n hoặc bằng số cạnh của nó.