Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG huyện lớp 8 môn Toán vòng 2 năm 2022 2023 phòng GD ĐT Lập Thạch Vĩnh Phúc

Nội dung Đề HSG huyện lớp 8 môn Toán vòng 2 năm 2022 2023 phòng GD ĐT Lập Thạch Vĩnh Phúc Bản PDF - Nội dung bài viết Đề Thi HSG Huyện Lớp 8 Môn Toán Vòng 2 Năm 2022 - 2023 Đề Thi HSG Huyện Lớp 8 Môn Toán Vòng 2 Năm 2022 - 2023 Xin chào quý thầy cô và các em học sinh lớp 8! Dưới đây là đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 8 vòng 2 năm học 2022 - 2023 do Phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc tổ chức. Đề thi có 10 bài toán tự luận, thời gian làm bài là 150 phút. Trích dẫn Đề HSG huyện Toán lớp 8 vòng 2 năm 2022 - 2023 phòng GD&ĐT Lập Thạch - Vĩnh Phúc: 1. Biết rằng đa thức \( f(x) \) khi chia cho \( x - 2 \) thì được số dư là 6067; khi chia cho \( x + 3 \) thì được số dư là -4043. Tìm đa thức dư khi chia đa thức \( f(x) \) cho đa thức \( x² + x - 6 \). 2. Cho hình vuông \( ABCD \) có cạnh bằng 8. Trên cạnh \( BC \), lấy điểm M sao cho \( BM = 5 \). Gọi N là giao điểm của đường thẳng \( CD \) và đường thẳng vuông góc với \( AM \) tại A. Gọi I là trung điểm của MN. Hãy tính độ dài đoạn thẳng DI. 3. Cho hình vuông \( ABCD \) có cạnh bằng a. Trên cạnh \( AD \) lấy điểm M sao cho \( AM = 3MD \). Kẻ tia \( BX \) cắt cạnh \( CD \) tại I sao cho \( ABM = MBI \). Kẻ tia phân giác của \( CBI \), tia này cắt cạnh \( CD \) tại N. a) Chứng minh rằng: \( MN = AM + NC \). b) Tính diện tích tam giác BMN theo a. Hy vọng đề thi sẽ giúp các em ôn tập và chuẩn bị tốt nhất cho kì thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT thành phố Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 THCS năm học 2021 – 2022 phòng Giáo dục và Đào tạo thành phố Ninh Bình, tỉnh Ninh Bình.
Đề học sinh năng khiếu Toán 8 năm 2021 - 2022 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra học sinh năng khiếu môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2022. Trích dẫn đề học sinh năng khiếu Toán 8 năm 2021 – 2022 phòng GD&ĐT Thanh Trì – Hà Nội : + Cho ABC có độ dài các cạnh lần lượt là a, b, c; chu vi của tam giác là 2p. Chứng minh rằng? + Cho đoạn thẳng AB và một điểm M bất kì trên đoạn thẳng đó (M khác A và B). Trên cùng một nửa mặt phẳng bờ AB dựng hai hình vuông AMCD và BMEF có tâm đối xứng lần lượt là hai điểm O và I. Gọi N là giao điểm của AE và BC, P là giao điểm của AC và BE. a) Chứng minh: E là trực tâm của ABC từ đó suy ra BC vuông góc với AE. b) Chứng minh ba điểm D, N, F thẳng hàng. c) Gọi K là giao điểm của AC và MN. Chứng minh: AP.CK = AK.CP d) Xác định vị trí của điểm M trên đoạn thẳng AB sao cho đoạn thẳng MN có độ dài lớn nhất. + Người ta dùng các số 1, 2, 3, 4, 5, 6, 7, 8 để gán cho các đỉnh của một hình lập phương, hai đỉnh khác nhau thì gán các số khác nhau. Sau đó tính tổng ở hai đỉnh kề nhau. Chứng minh rằng có ít nhất hai tổng bằng nhau?
Đề HSG huyện Toán 8 năm 2021 - 2022 phòng GDĐT Thuận Thành - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện cấp THCS môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Thuận Thành, tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Tư ngày 13 tháng 04 năm 2022. Trích dẫn đề HSG huyện Toán 8 năm 2021 – 2022 phòng GD&ĐT Thuận Thành – Bắc Ninh : + Cho x y z là các số thực dương thoả mãn điều kiện: x + y + z = x.y.z. Chứng minh rằng? + Cho hình bình hành ABCD, lấy điểm M trên BD sao cho MB khác MD. Đường thẳng qua M và song song với AB cắt AD và BC lần lượt tại E và F. Đường thẳng qua M và song song với AD cắt AB và CD lần lượt tại K và H. 1. Chứng minh: KF // EH. 2. Chứng minh: các đường thẳng EK, HF, BD đồng quy. 3. Chứng minh: S_MKAE = S_MHCF. + Giả sử số A được viết bởi 2n chữ số 1; số B được viết bởi n chữ số 4 với n là số nguyên dương bất kỳ. Chứng minh rằng số A + B + 1 bằng bình phương của một số nguyên.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Duy Tiên - Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo thị xã Duy Tiên, tỉnh Hà Nam. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Duy Tiên – Hà Nam : + Cho ba số x, y, z khác 0 thỏa mãn điều kiện. Chứng minh rằng trong ba số x, y, z tồn tại hai số đối nhau. + Cho đa thức f(x). Biết dư trong các phép chia f(x) cho x – 1 và x + 1 lần lượt là 1 và 3. Hãy tìm dư trong phép chia f(x) cho x2 – 1. + Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N. a) Chứng minh rằng tứ giác AEMD là hình chữ nhật. b) Biết diện tích tam giác BCH gấp bốn lần diện tích tam giác AEH. Chứng minh rằng: AC = 2EF. c) Chứng minh rằng AD2 AM2 AN2.