Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 8 môn Toán năm học 2018 2019 sở GD ĐT Bắc Ninh

Nội dung Đề thi học sinh giỏi lớp 8 môn Toán năm học 2018 2019 sở GD ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 năm học 2018 - 2019 sở GD&ĐT Bắc Ninh Đề thi học sinh giỏi Toán lớp 8 năm học 2018 - 2019 sở GD&ĐT Bắc Ninh Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 8 đề thi học sinh giỏi môn Toán lớp 8 năm học 2018 - 2019 sở GD&ĐT Bắc Ninh. Đây là kỳ thi nhằm tuyển chọn những em học sinh lớp 8 giỏi môn Toán đang học tập tại các trường THCS tại tỉnh Bắc Ninh để tuyên dương, khen thưởng, làm gương sáng cho các em học sinh khác noi theo. Đề thi học sinh giỏi Toán lớp 8 năm học 2018 - 2019 sở GD&ĐT Bắc Ninh được biên soạn theo hình thức tự luận với 05 bài toán, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán lớp 8 năm học 2018 - 2019 sở GD&ĐT Bắc Ninh: Cho hình vuông ABCD, gọi M là điểm bất kì trên cạnh BC. Trong nửa mặt phẳng bờ AB chứa C, dựng hình vuông AMHN. Qua M dựng đường thẳng d song song với AB, d cắt AH tại E. Đường thẳng AH cắt DC tại F. Chứng minh rằng BM = ND. Tứ giác EMFN là hình gì? Chứng minh chu vi tam giác MFC không đổi khi M thay đổi trên BC. Cho tam giác ABC có góc BAC bằng 90 độ, góc ABC bằng 20 độ. Các điểm E và F lần lượt nằm trên các cạnh AC, AB sao cho góc ABE bằng 10 độ và góc ACF bằng 30 độ. Tính CFE. Cho hình vuông ABCD và 9 đường thẳng cùng có tính chất là mỗi đường thẳng chia hình vuông ABCD thành hai tứ giác có tỉ số diện tích bằng 2/3. Chứng minh rằng có ít nhất 3 đường thẳng trong số đó cùng đi qua một điểm. Cho a, b, c là các số nguyên khác 0, a khác c sao cho \( \frac{(a^2 + b^2)}{(b^2 + c^2)} = \frac{a}{c} \). Chứng minh rằng \(a^2 + b^2 + c^2\) không phải là số nguyên tố.

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu HSG huyện Toán 8 năm 2015 - 2016 phòng GDĐT Cẩm Giàng - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Cẩm Giàng – Hải Dương; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề giao lưu HSG huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Cẩm Giàng – Hải Dương : + Cho tam giác ABC nhọn (AB < AC). Các đường cao AE, BF, CG cắt nhau tại H. Gọi M là trung điểm của BC, qua H vẽ đường thẳng a vuông góc với HM, a cắt AB, AC lần lượt tại I và K. a) Chứng minh tam giác ABC đồng dạng với tam giác EFC. b) Qua C kẻ đường thẳng b song song với đường thẳng IK, b cắt AH, AB theo thứ tự tại N và D. Chứng minh NC = ND và HI = HK. c) Chứng minh. + Tìm đa thức f(x) biết rằng: f(x) chia cho x – 2 dư 10, f(x) chia cho x + 2 dư 26, f(x) chia cho x2 – 4 được thương là -5x và còn dư. + Cho a, b, c là 3 cạnh của một tam giác. Chứng minh rằng.
Đề học sinh giỏi huyện Toán 8 năm 2015 - 2016 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho tam giác ABC vuông tại A (AC > AB), đường cao AH (H BC). Trên tia đối của tia HB lấy điểm D sao cho HD = HA. Qua D kẻ đường thẳng vuông góc với BC cắt AC tại E. 1.Chứng minh CD.CB = CA.CE 2. Tính số đo góc BEC. 3. Gọi M là trung điểm của đoạn BE. Tia AM cắt BC tại G. Chứng minh: GB HD BC AH HC. + Cho các số a, b, c thỏa mãn a + b + c = 32. Tìm giá trị nhỏ nhất của biểu thức P = a2 + b2 + c2. + Chứng minh biểu thức: A = 4a(a + b)(a + b + c)(a + c) + b2 c2 0 với mọi a, b, c.
Đề giao lưu HSG Toán 8 năm 2014 - 2015 phòng GDĐT Vĩnh Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm 2014 – 2015 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề giao lưu HSG Toán 8 năm 2014 – 2015 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa : + Cho tam giác nhọn ABC (AB < AC) có đường cao AH sao cho AH = HC. Trên AH lấy một điểm I sao cho HI = BH. Gọi P và Q là trung điểm của BI và AC. Gọi N và M là hình chiếu của H trên AB và IC ; K là giao điểm của đường thẳng CI với AB; D là giao điểm của đường thẳng BI với AC. a) Chứng minh I là trực tâm của tam giác ABC. b) Tứ giác HNKM là hình vuông. c) Chứng minh bốn điểm N, P, M, Q thẳng hàng. + Cho x là số nguyên. Chứng minh rằng biểu thức M = (x + 1)(x + 2)(x + 3)(x + 4) + 1 là bình phương của một số nguyên. + Cho x, y, z là các số nguyên thỏa mãn: x + y + z chia hết cho 6. Chứng minh M = (x + y)(x + z)(y + z) – 2xyz chia hết cho 6.
Đề học sinh giỏi huyện Toán 8 năm 2014 - 2015 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho abc là các số hữu tỷ thỏa mãn điều kiện ab bc ca 1. Chứng minh rằng biểu thúc 222 Qa b c là bình phương của một số hữu tỷ. + Cho các số nguyên abc thoả mãn 333 210 ab bc ca. Tính giá trị của biểu thức B ab bc ca. + Cho tam giác ABC, M là một điểm thuộc cạnh BC M kh B M kh C. Qua M kẻ các đường thẳng song song với AC AB, chúng cắt AB AC lần lượt tại D và E. a) Chứng minh tứ giác ADME là hình bình hành. Xác định vị trí của điểm M trên cạnh BC để hình bình hành ADME là hình thoi. b) Chứng minh rằng BD EC DM ME. c) Cho 2 2 9 16 BDM CME S cm S cm. Tính ABC S (ký hiệu S là diện tích tam giác). d) Chứng minh rằng AM BC AC BM AB CM.