Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 trường ĐHSP Hà Nội

Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 trường ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh chuyên môn Toán (chuyên) 2022 trường ĐHSP Hà Nội Đề thi tuyển sinh chuyên môn Toán (chuyên) 2022 trường ĐHSP Hà Nội Chào đón quý thầy, cô giáo và các em học sinh lớp 9! Đây là đề thi chính thức dành cho thí sinh muốn thi vào lớp 10 THPT chuyên môn Toán (chuyên) năm 2022 tại trường Đại học Sư Phạm Hà Nội. Đề thi này chỉ dành cho thí sinh thi vào lớp chuyên Toán và chuyên Tin học (đề thi vòng 2). Kỳ thi sẽ diễn ra vào chiều thứ Tư, ngày 01 tháng 06 năm 2022. Đề thi bao gồm câu hỏi và đáp án cùng lời giải chi tiết do CLB Toán Lim thực hiện, gồm các thành viên: Nguyễn Duy Khương, Nguyễn Văn Hoàng, Nguyễn Khang và Nguyễn Hoàng Việt. Dưới đây là một số câu hỏi trích dẫn từ đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 trường ĐHSP Hà Nội: 1. Chứng minh rằng nếu có đa thức P(x) = ax² + bx + c (với a khác 0) nhận giá trị nguyên với mọi số nguyên x, thì ba số 2a, a + b, c đều là số nguyên. Ngược lại, nếu ba số 2a, a + b, c là số nguyên, thì P(x) cũng nhận giá trị nguyên với mỗi số nguyên x. 2. Trong tam giác ABC đều ngoại tiếp (O), cung nhỏ OB của đường tròn ngoại tiếp tam giác (OBC) cắt đường tròn (O) tại E. Tia BE cắt đường tròn (O) tại F. Hãy chứng minh rằng EO là tia phân giác góc CEF và tứ giác ABOF là tứ giác nội tiếp. Hơn nữa, chứng minh rằng A, F, D thẳng hàng với D là giao điểm thứ hai của CE và đường tròn (O). 3. Viết 10 số từ 0 đến 9 vào mười ô tròn sao cho mỗi số được viết đúng một lần. Tính tổng ba số trên mỗi đoạn thẳng để nhận được 6 tổng. Có cách viết 10 số như vậy không để 6 tổng bằng nhau? Chúc các em học sinh lớp 9 ôn tập tốt và thành công trong kỳ thi tuyển sinh sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT An Giang
Thứ Bảy ngày 18 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh An Giang tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT An Giang gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT An Giang : + Cho ABCD là hình vuông có cạnh 1 dm. Trên cạnh AB lấy một điểm E. Dựng hình chữ nhật CEFG sao cho điểm D nằm trên cạnh FG. Tính diện tích hình chữ nhật CEFG (hình vẽ bên). + Cho tam giác ABC có ba góc đều nhọn và nội tiếp trong đường tròn (O). Vẽ các đường cao AA’, BB’, CC cắt nhau tại H. a. Chứng minh rằng tứ giác AB’HC’ là tứ giác nội tiếp. b. Kéo dài AA’ cắt đường tròn (O) tại điểm D. Chứng minh rằng tam giác CDH cân. [ads] + Cho hàm số y = x2 có đồ thị là parabol (P). a. Vẽ đồ thị (P) trên hệ trục tọa độ. b. Viết phương trình đường thẳng (d) có hệ số góc bằng −1 và cắt parabol (P) tại điểm có hoành độ bằng 1. c. Với (d) vừa tìm được, tìm giao điểm còn lại của (d) và (P).
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Bắc Giang
Thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Bắc Giang tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bắc Giang gồm có 02 trang với 20 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Bắc Giang : + Một công ty X dự định điều động một số xe để chở 100 tấn hàng. Khi sắp khởi hành thì 5 xe được điều đi làm việc khác nên mỗi xe còn lại phải chở thêm 1 tấn hàng so với dự định. Tính số xe mà công ty X dự định điều động, biết mỗi xe chở khối lượng hàng như nhau. [ads] + Cho đường tròn tâm O, bán kính R = 3cm. Gọi A, B là hai điểm phân biệt cố định trên đường tròn (O;R) (AB không là đường kính). Trên tia đối của tia BA lấy một điểm M (M khác B). Qua M kẻ hai tiếp tuyến MC, MD với đường tròn đã cho (C, D là hai tiếp điểm). a) Chứng minh tứ giác OCMD nội tiếp trong một đường tròn. b) Đoạn thẳng OM cắt đường tròn (O;R) tại điểm E. Chứng minh rằng khi CMD = 60 độ thì E là trọng tâm của tam giác MCD. c) Gọi N là điểm đối xứng của M qua O. Đường thẳng đi qua O vuông góc với MN cắt các tia MC, MD lần lượt tại các điểm P và Q. Khi M di động trên tia đối của tia BA, tìm vị trí của điểm M để tứ giác MPNQ có diện tích nhỏ nhất. + Cho đoạn thẳng AC, B là điểm thuộc đoạn AC sao cho BC = 3BA. Gọi AT là một tiếp tuyến của đường tròn đường kính BC (T là tiếp điểm), BC = 6 cm. Độ dài đoạn thẳng AT bằng?
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 2021 sở GDĐT Quảng Trị
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Quảng Trị gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 21 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Quảng Trị : + Cho các parabol (P1) : y = mx2, (P2) : y = nx2 (m khác n). Lấy các điểm A, B thuộc (P1) và C, D thuộc (P2) sao cho ABCD là hình vuông nhận Oy làm trục đối xứng. Tính diện tích hình vuông ABCD. + Chứng minh rằng có thể chọn 3 số a1, a2, a3 trong 7 số nguyên tố phân biệt bất kì sao cho P = (a1 − a2) (a1 − a3) (a2 − a3) chia hết cho 216. + Cho các số thực a, b, c thỏa mãn 3a2 + 3b2 + 8c2 = 32. Tìm giá trị lớn nhất của biểu thức P = ab + bc + ca.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 2021 sở GDĐT Quảng Nam
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Quảng Nam gồm có 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 23 – 25 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Quảng Nam : + Cho Parabol (P) : y = x2 và đường thẳng (d) : y = 2x + 3. Tìm giá trị của tham số m biết rằng đường thẳng (d0) : y = 4x + m cắt đường thẳng (d) tại điểm có hoành độ dương thuộc (P). + Cho ba số thực dương x, y, z thỏa mãn x + y + z = 3. Tìm giá trị lớn nhất của biểu thức H = 3xy + yz2 + zx2 − x2y. + Cho tam giác ABC cân tại A (AB < AC), M là trung điểm của AC, G là trọng tâm của tam giác ABM. 1. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh OG vuông góc với BM. 2. Lấy điểm N trên cạnh BC sao cho BN = BA. Vẽ NK vuông góc với AB tại K, BE vuông góc với AC tại E, KF vuông góc với BC tại F. Tính tỉ số BE/KF.