Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử lớp 10 năm 2019 - 2020 môn Toán trường Trần Nhân Tông - Hà Nội

Chủ Nhật ngày 07 tháng 04 năm 2019, trường THPT Trần Nhân Tông – Hà Nội tổ chức kỳ thi thử môn Toán tuyển sinh vào lớp 10 khối THPT năm học 2019 – 2020 dành cho các em học sinh lớp 9. Kỳ thi nhằm giúp các em học sinh lớp 9 đăng ký dự thi được tham gia thử sức, qua đó các em sẽ nắm được lực học hiện tại của bản thân, đồng thời làm quen với kỳ thi và nắm được dạng đề môn Toán. Đề thi thử lớp 10 năm 2019 – 2020 môn Toán trường Trần Nhân Tông – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi thử lớp 10 năm 2019 – 2020 môn Toán trường Trần Nhân Tông – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một hình chữ nhật có diện tích bằng 120m. Nếu tăng chiều rộng thêm 2m đồng thời giảm chiều dài đi 5m, thì thu được một hình vuông. Tìm chiều dài và chiều rộng của hình chữ nhật ban đầu theo mét. [ads] + Cho đường tròn (O) và dây cung BC cố định không đi qua O. A là một điểm di động trên cung lớn BC (AB < AC) sao cho tam giác ABC nhọn. Các đường cao BE, CF cắt nhau tại H. Gọi K là giao điểm của đường thẳng EF và đường thẳng BC. 1) Chứng minh tứ giác BCEF nội tiếp. 2) Chứng minh KB.KC = KE.KF. 3) Gọi M giao điểm của AK với đường tròn (O) (M khác A). Chứng minh MH vuông  góc với AK. 4) Chứng minh đường thẳng MH luôn đi qua một điểm cố định khi A di động trên cung lớn BC.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh THPT môn Toán (chuyên) năm 2022 2023 sở GD ĐT An Giang
Nội dung Đề tuyển sinh THPT môn Toán (chuyên) năm 2022 2023 sở GD ĐT An Giang Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán (chuyên) năm 2022 2023 sở GD ĐT An Giang Đề tuyển sinh THPT môn Toán (chuyên) năm 2022 2023 sở GD ĐT An Giang Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh An Giang. Kỳ thi sẽ diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022. Đề thi bao gồm đáp án và lời giải chi tiết do tác giả Đặng Lê Gia Khánh thực hiện. Đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT An Giang bao gồm nhiều câu hỏi, trong đó có phương trình bậc hai ẩn. Đề thi không chỉ giúp học sinh rèn luyện kỹ năng giải toán mà còn giúp phát triển tư duy logic và khả năng xử lý vấn đề. Hãy tự tin và chăm chỉ ôn tập để đạt kết quả cao trong kỳ thi tuyển sinh sắp tới. Chúc các em học sinh thành công!
Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Thanh Hóa
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Thanh Hóa Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Thanh Hóa Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Thanh Hóa Xin chào quý thầy cô giáo và các em học sinh lớp 9. Sytu hân hạnh giới thiệu đến các bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào thứ Bảy, ngày 18 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022-2023 sở GD&ĐT Thanh Hóa: Cho tam giác nhọn ABC có AB = AC và nội tiếp đường tròn (O). Gọi H là chân đường cao hạ từ đỉnh A của tam giác ABC và E là hình chiếu vuông góc của điểm B lên đường thẳng AO. Chứng minh tứ giác AEHB là tứ giác nội tiếp. Chứng minh đường thẳng HE vuông góc với đường thẳng AC. Gọi M là trung điểm của cạnh BC. Tính tỉ số ME/MH. Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y = mx + 2/(m^2-1) (m là tham số). Tìm m để đường thẳng (d) cắt trục hoành tại điểm có hoành độ bằng 2. Cho ba số thực dương x, y, z thỏa mãn điều kiện xy + yz + zx = xyz + 3. Tìm giá trị nhỏ nhất của biểu thức (x^2 + y^2 + z^2)/((x + y)(y + z)(z + x)). Mong rằng đề thi này sẽ giúp các em thí sinh chuẩn bị tốt cho kỳ thi quan trọng sắp tới. Chúc các bạn học tốt và đạt kết quả cao!
Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Hà Nam
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Hà Nam Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2022 - 2023 sở GD ĐT Hà Nam Đề tuyển sinh THPT môn Toán năm 2022 - 2023 sở GD ĐT Hà Nam Chào các thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 - 2023 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam. Kỳ thi sẽ diễn ra vào thứ Bảy, ngày 18 tháng 06 năm 2022. Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GD&ĐT Hà Nam bao gồm hai câu hỏi như sau: Câu 1: Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x2 và đường thẳng (d) có phương trình y = 2mx + 3 - 2m (với m là tham số). Hỏi m để đường thẳng (d) đi qua điểm A(2;1). Câu 2: Lớp 9A giao cho An đi mua bánh và kẹo để tổ chức liên hoan. An mua tất cả 15 hộp bánh và 5 túi kẹo với số tiền phải trả là 850 nghìn đồng. Biết rằng, giá mỗi hộp bánh là như nhau, giá mỗi túi kẹo là như nhau và giá một hộp bánh hơn giá một túi kẹo là 10 nghìn đồng. Hãy tính giá tiền để mua một hộp bánh và giá tiền để mua một túi kẹo. Câu 3: Cho đường tròn tâm O có đường kính AB = 2R. Gọi I là trung điểm của đoạn thẳng OA và E là điểm thuộc đường tròn tâm O (E không trùng với A và B). Chứng minh: tứ giác AMEI nội tiếp. Câu 4: Gọi P là giao điểm của AE và MI, Q là giao điểm của BE và NI. Chứng minh hai đường thẳng PQ và BN vuông góc với nhau khi ba điểm E, I, F thẳng hàng. Mong rằng đề thi này sẽ giúp các em ôn tập và chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc các em học tốt!
Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Phú Yên
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Phú Yên Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2022 - 2023 sở GD ĐT Phú Yên Đề tuyển sinh môn Toán (chuyên) năm 2022 - 2023 sở GD ĐT Phú Yên Hôm nay, Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Phú Yên. Đề thi bao gồm các câu hỏi phong phú, đa dạng, để kiểm tra khả năng giải quyết vấn đề và tư duy logic của thí sinh. Hãy cùng phân tích một số câu hỏi chi tiết sau: 1. Tìm m để phương trình \( x^2 - (m + 1)x + m + 3 = 0 \) (trong đó m là tham số) có hai nghiệm x1 và x2 là độ dài hai cạnh AB, AC của tam giác ABC vuông tại A và có BC = 5. 2. Cho ba đường thẳng cố định a, b, c song song nhau sao cho b nằm giữa và cách đều a và c. Một đường thẳng d cố định, vuông góc với a, cắt a, b, c tại A, B, C. Trên đoạn AB lấy điểm I sao cho IA = 2IB. Gọi D là một điểm di động trên c. Trên b lấy điểm E sao cho IE = 1/2.ID. Đường thẳng DE cắt a tại F. a) Chứng minh rằng FIH = 90°. b) Chứng minh rằng đường thẳng DE luôn tiếp xúc với một đường tròn cố định. 3. Cho các số nguyên dương x, y, z thỏa \( (x + y)^4 + 5z = 63x \). Hãy tính giá trị của biểu thức \( Q = x + y + z \). Đây là những câu hỏi thú vị và thách thức đối với các thí sinh, giúp họ rèn luyện kỹ năng giải quyết vấn đề và tư duy logic một cách hiệu quả. Chúc các em thành công trong kỳ thi sắp tới!