Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh 10 môn Toán (không chuyên) năm 2020 2021 trường PTNK TP HCM

Nội dung Đề tuyển sinh 10 môn Toán (không chuyên) năm 2020 2021 trường PTNK TP HCM Bản PDF - Nội dung bài viết Đề tuyển sinh 10 môn Toán (không chuyên) năm 2020-2021 trường PTNK TP HCM Đề tuyển sinh 10 môn Toán (không chuyên) năm 2020-2021 trường PTNK TP HCM Vào ngày ... tháng 07 năm 2020, trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán cho năm học 2020-2021. Đề tuyển sinh 10 môn Toán (không chuyên) năm 2020-2021 của trường PTNK TP HCM bao gồm 01 trang đề bài với 05 bài toán dạng tự luận, thời gian làm bài là 120 phút với lời giải chi tiết được cung cấp. Trích dẫn một số câu hỏi trong đề tuyển sinh 10 môn Toán năm 2020-2021 của trường PTNK TP HCM: Một kho hàng nhập gạo trong 4 ngày liên tiếp với quy luật nhập và xuất hàng cụ thể. Hãy tính lượng gạo kho hàng nhập vào ngày thứ nhất trong hai trường hợp cụ thể. Cho tam giác ABC nội tiếp đường tròn (T) với các điểm M, N, P, D, E, F cụ thể và yêu cầu chứng minh và tính toán tỉ lệ cần thiết. Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A và B, sau đó tính tổng y1 + y2 theo m cho mọi số thực m. Với nội dung đa dạng và phong phú, bài thi tuyển sinh 10 môn Toán của trường PTNK TP HCM hứa hẹn là cơ hội để học sinh thể hiện năng lực và kiến thức trong môn học quan trọng này.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh vào lớp 10 môn Toán của các trường chuyên, chọn trên toàn quốc
Sách gồm các đề thi tuyển sinh vào lớp 10 môn Toán của các trường chuyên, chọn từ năm 2000 đến nay. Các đề thi đều có lời giải chi tiết .
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT An Giang
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT An Giang gồm 6 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hàm số y = ax + b (a ≠ 0) có đồ thị là đường thẳng d trên mặt phẳng tọa độ Oxy. Viết theo a và b phương trình đường thẳng (d′). Biết rằng (d) và (d′) vuông góc với nhau đồng thời cắt nhau tại một điểm thuộc trục hoành. + Cho tam giác ABC nội tiếp đường tròn O. Biết A = 60 độ; B và C là hai góc nhọn có số đo khác nhau. Vẽ các đường cao BE, CF của tam giác ABC (E, F lần lượt thuộc AC, AB). a. Chứng minh rằng góc BCF và góc BEF bằng nhau. [ads] b. Gọi I là trung điểm của BC. Chứng minh tam giác IEF là tam giác đều. c. Gọi K là trung điểm của EF. Chứng minh rằng IK song song OA. + Trong một hình vành khăn với các bán kính đường tròn là 10R và 8R. Xếp các hình tròn bán kính R tiếp xúc với cả hai đường tròn của hình vành khăn sao cho các hình tròn này không chồng lấn nhau. Hỏi xếp được nhiều nhất bao nhiêu hình tròn như thế?
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT Lạc Thủy - Hòa Bình (Ban A)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT Lạc Thủy – Hòa Bình (Ban A) gồm 25 bài toán theo hình thức điền kết quả.
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Toán)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Quốc học – TT Huế (chuyên Toán) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Trong mặt phẳng tọa độ Oxy, cho parabol 2 (P): y = x^2, đường thẳng (d) có hệ số góc k và đi qua điểm M(0;1). Chứng minh rằng với mọi giá trị của k, (d) luôn cắt (P) tại hai điểm phân biệt A và B có hoành độ x1, x2 thỏa điều kiện /x1 – x2/ >= 2. [ads] + Cho đường tròn (O) có tâm O và hai điểm C, D trên (O) sao cho ba điểm C, O, D không thẳng hàng. Gọi Ct là tia đối của tia CD, M là điểm tùy ý trên Ct, M khác C. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A và B là các tiếp điểm, B thuộc cung nhỏ CD). Gọi I là trung điểm của CD, H là giao điểm của đường thẳng MO và đường thẳng AB. a) Chứng minh tứ giác MAIB nội tiếp. b) Chứng minh đường thẳng AB luôn đi qua một điểm cố định khi M di động trên tia Ct. c) Chứng minh MD/MC = HA^2/HC^2