Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Phú Yên

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Phú Yên; đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Phú Yên : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Quãng đường AB gồm một đoạn lên dốc dài 5km và một đoạn xuống dốc dài 10km. Một người đi xe đạp từ A đến B hết 1 giờ 10 phút và đi từ B về A hết 1 giờ 20 phút (vận tốc lên dốc, xuống dốc lúc đi và về như nhau). Tính vận tốc lúc lên dốc, lúc xuống dốc của người đi xe đạp. + Cho hình thang ABCD có A D 90 AD AB 4 CD AB 3. Gọi M là trung điểm của AD, E là hình chiếu vuông góc của M lên BC. Tia BM cắt đường thẳng CD tại F. a) Chứng minh rằng MAE MBE. b) Chứng minh rằng ABDF là hình bình hành. c) Đường thẳng qua M vuông góc với BF cắt cạnh BC tại N. Gọi H là hình chiếu vuông góc của N lên CD. Chứng minh rằng tam giác BNF cân. d) Chứng minh rằng đường thẳng MH đi qua trung điểm của DE. + Cho hàm số 2 y ax. a) Xác định hệ số a biết rằng đồ thị của hàm số cắt đường thẳng y x 2 tại điểm A có hoành độ bằng 1. b) Vẽ đồ thị của hàm số y x 2 và đồ thị hàm số 2 y ax với giá trị của a vừa tìm được ở câu a trên cùng một mặt phẳng tọa độ. c) Dựa vào đồ thị, hãy xác định tọa độ giao điểm thứ hai (khác A) của hai đồ thị vừa vẽ trong câu b.

Nguồn: toanmath.com

Đọc Sách

Đề tham khảo Toán thi vào 10 năm 2023 - 2024 phòng GDĐT thị xã Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tham khảo môn Toán kỳ thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo thị xã Phú Thọ, tỉnh Phú Thọ; đề thi có đáp án và thang điểm dự kiến. Trích dẫn Đề tham khảo Toán thi vào 10 năm 2023 – 2024 phòng GD&ĐT thị xã Phú Thọ : + Cho một số có hai chữ số. Nếu đổi chỗ hai chữ số của nó thì được một số mới lớn hơn số đã cho là 63. Tổng của số đã cho và số mới tạo thành 99. Tổng các chữ số của số đó là? + Cho hàm số y = ax2 với a ≠ 0. Kết luận nào sau đây là đúng? A. Hàm số đồng biến khi a 0 và x 0 B. Hàm số đồng biến khi a 0 và x 0 C. Hàm số đồng biến khi a 0 và x 0 D. Hàm số đồng biến khi a 0 và x = 0. + Cho hai điểm A B cố định. Một điểm C khác B di chuyển trên đường tròn (O) đường kính AB sao cho AC BC. Tiếp tuyến của đường tròn (O) tại C cắt tiếp tuyến tại A ở D cắt AB ở E. Đường thẳng đi qua E vuông góc với AB cắt AC BD lần lượt tại F G. Gọi I là trung điểm AE. a) Chứng minh rằng tứ giác ADCO nội tiếp một đường tròn. b) Chứng minh rằng 2 2 AB OD BC c) Chứng minh EF 2 EG d) Chứng minh rằng trực tâm tam giác GIF là một điểm cố định.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (đề chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; kỳ thi được diễn ra vào thứ Ba ngày 30 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Hà Nam : + Cho biểu thức A. 1. Rút gọn biểu thức A. 2. Tìm tất cả các số nguyên của x để |2A − 1| + 1 = 2A. + Cho đường tròn (O) có dây cung BC cố định và không đi qua tâm O. Gọi A là điểm di động trên đường tròn (O) sao cho tam giác ABC nhọn và AB < AC. Gọi M là trung điểm của cạnh BC và H là trực tâm tam giác ABC. Tia MH cắt đường tròn (O) tại K, đường thẳng AH cắt cạnh BC tại D và AE là đường kính của đường tròn (O). 1. Chứng minh BAD = CAE. 2. Chứng minh rằng tứ giác BHCE là hình bình hành và HA.HD = HK.HM. 3. Tia KD cắt đường tròn (O) tại I (I khác K), đường thẳng đi qua I và vuông góc với đường thẳng BC cắt AM tại J. Chứng minh rằng các đường thẳng AK, BC và HJ cùng đi qua một điểm. 4. Một đường tròn thay đổi luôn tiếp xúc với AK tại A và cắt các cạnh AB, AC lần lượt tại P, Q phân biệt. Gọi N là trung điểm của đoạn thẳng PQ. Chứng minh rằng đường thẳng AN luôn đi qua một điểm cố định. + Cho a, b, c là ba số thực dương thỏa mãn điều kiện. Tìm giá trị lớn nhất của biểu thức.
Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2023 - 2024 sở GDĐT Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (đề chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào thứ Hai ngày 29 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Hà Nam : + Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x2, đường thẳng (d) có phương trình y = 2x + m2 – 4m + 9 (với m là tham số) và đường thẳng (delta) có phương trình y = (a − 3)x + 4 (với a là tham số). 1. Tìm a để đường thẳng (d) và đường thẳng (delta) vuông góc với nhau. 2. Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B với mọi m. Gọi A(x1;y1) và B(x2;y2) (với x1 < x2), tìm tất cả các giá trị của tham số m sao cho |x1 – 2023| – |x2 + 2023| = y1 + y2 – 48. + Cho đường tròn (O). Từ điểm M bên ngoài đường tròn kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A và B là các tiếp điểm). Lấy điểm C trên cung nhỏ AB (C không nằm chính giữa cung AB, C khác A và B). Gọi D, E, F lần lượt là hình chiếu vuông góc của C trên các đường thẳng AB, AM, BM. 1. Chứng minh tứ giác AECD nội tiếp đường tròn. 2. Chứng minh rằng CDE = CFD. 3. Gọi I là giao điểm của AC và ED, K là giao điểm của CB và DF. Chứng minh CD vuông góc IK. 4. Đường tròn ngoại tiếp hai tam giác CIE và CKF cắt nhau tại điểm thứ hai N (N khác C). Chứng minh đường thẳng NC đi qua trung điểm của đoạn thẳng AB. + Cho a, b, c là các số không âm thỏa mãn a + b + c = 1011. Chứng minh.
Đề khảo sát Toán vào 10 năm 2023 lần 3 phòng GDĐT Giao Thuỷ - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát môn Toán tuyển sinh vào lớp 10 THPT năm 2023 lần 3 phòng Giáo dục và Đào tạo huyện Giao Thuỷ, tỉnh Nam Định; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán vào 10 năm 2023 lần 3 phòng GD&ĐT Giao Thuỷ – Nam Định : + Cho phương trình 2 2 3 0 x mx (1) (với mlà tham số). a) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị m. b) Tìm tất cả các giá trị của m để phương trình (1) có hai nghiệm phân biệt 1 2 x x thỏa mãn 1 2 x x 3. + Cho đường tròn O 3cm. Từ điểm M nằm ngoài đường tròn O kẻ hai tiếp tuyến MA, MB với đường tròn O (A, B là các tiếp điểm) sao cho 0 AOB 120. Tính diện tích phần giới hạn bởi hai tiếp tuyến MA, MB và cung nhỏ AB. + Cho đường tròn (O) có dây AB không là đường kính, tiếp tuyến tại A và B cắt nhau tại M. Vẽ cát tuyến MCD nằm giữa hai tia MA và MO (MC MD). Đoạn thẳng MO cắt AB tại H và cắt (O) tại điểm I. Chứng minh: a) 2 MA MC MD và 2 MC MD OH OM MO. b) Tứ giác OHCD nội tiếp và CI là tia phân giác của HCM.