Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phát triển bài toán vận dụng cao đề minh họa THPT 2020 môn Toán lần 2

Nội dung Phát triển bài toán vận dụng cao đề minh họa THPT 2020 môn Toán lần 2 Bản PDF - Nội dung bài viết Phát triển bài toán vận dụng cao THPT 2020 môn Toán lần 2 Phát triển bài toán vận dụng cao THPT 2020 môn Toán lần 2 Để giúp học sinh chuẩn bị cho kỳ thi tốt nghiệp THPT năm 2020 môn Toán, thầy giáo Lê Văn Đoàn đã biên soạn một tài liệu hướng dẫn giải và phát triển các bài toán vận dụng cao (VDC) trong đề minh họa. Tài liệu này bao gồm 51 trang, tập trung vào việc giải và phát triển các bài toán từ câu 46 đến câu 50. Cụ thể, tài liệu bao gồm các dạng toán như: Câu 46: Tìm số nghiệm của phương trình liên quan đến sinx khi có bảng biến thiên Biện luận nghiệm dựa vào bảng biến thiên hoặc đồ thị hàm f(x) Bài toán kết hợp giữa hàm số và tích phân Bài toán chứa tham số m trong bài toán chứa hàm cụ thể Câu 47: Tìm GTLN – GTNN của biểu thức hai ẩn phụ thuộc vào mũ – logarit Bài toán dồn biến, rồi sử dụng bất đẳng thức Cauchy hoặc khảo sát hàm một biến Sử dụng f(u) = f(v) hoặc f(u) > f(v) hoặc f(u) < f(v) khi hai gặp hai hàm khác loại Câu 48: Tìm GTLN – GTNN của hàm phụ thuộc tham số trên đoạn Bài toán chứa tham số trong hàm cụ thể Bài toán max – min khi đề cho đồ thị hoặc bảng biến thiên Giá trị lớn nhất và nhỏ nhất của hàm trị tuyệt đối Câu 49: Thể tích khối đa diện cắt ra từ một khối khác Câu 50: Tìm số ẩn hoặc mối liên hệ giữa các ẩn trong phương trình logarit chứa hai ẩn Đây là những dạng toán phức tạp và đòi hỏi một sự am hiểu sâu sắc về lý thuyết và kỹ năng giải toán của học sinh. Hy vọng tài liệu này sẽ giúp các em tự tin và chuẩn bị tốt cho kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Tuyển chọn 200 bài toán VD - VDC từ các đề thi thử tốt nghiệp THPT môn Toán
Tài liệu gồm 174 trang, được biên soạn bởi tác giả Trương Công Đạt, tuyển chọn 200 bài toán mức độ vận dụng – vận dụng cao (viết tắt: VD – VDC) từ các đề thi thử tốt nghiệp THPT môn Toán của các trường và sở GD&ĐT trên toàn quốc, có đáp án và lời giải chi tiết; lời giải các bài toán được trình bày theo nhiều cách: phương pháp tự luận, phương pháp giải nhanh trắc nghiệm, phương pháp sử dụng máy tính cầm tay Casio / Vinacal. Trích dẫn tài liệu tuyển chọn 200 bài toán VD – VDC từ các đề thi thử tốt nghiệp THPT môn Toán: + Cho hàm số f(x) là hàm đa thức bậc 3 và có đồ thị như hình vẽ. Xét hàm số g(x) = f(2×3 + x − 1) + m. Với giá trị nào của m thì giá trị nhỏ nhất của g(x) trên đoạn [0;1] bằng 2022? + Trong không gian cho hai điểm I (2;3;3) và J (4;−1;1). Xét khối trụ (T) có hai đường tròn đáy nằm trên mặt cầu đường kính IJ và có hai tâm nằm trên đường thẳng IJ. Khi có thể tích (T) lớn nhất thì hai mặt phẳng chứa hai đường tròn đáy của (T) có phương trình dạng x + by + cz + d1 = 0 và x + by + cz + d2 = 0. Giá trị của d21 + d22 bằng? + Trên tập hợp các số phức, xét phương trình z2 − 2z − m + 2 = 0 (m là tham số thực). Gọi T là tập hợp các giá trị của m để phương trình trên có hai nghiệm phân biệt được biểu diễn hình học bởi hai điểm A và B trên mặt phẳng tọa độ sao cho diện tích tam giác ABC bằng 2√2 với C(−1;1). Tổng các phần tử trong T bằng?
Toàn cảnh đề thi tốt nghiệp THPT môn Toán (2017 - 2022)
Tài liệu gồm 574 trang, được tổng hợp bởi thầy giáo Th.S Nguyễn Hoàng Việt, tổng hợp và phân loại theo chuyên đề các dạng toán trong các đề thi tốt nghiệp THPT môn Toán của Bộ Giáo dục và Đào tạo từ năm học 2016 – 2017 đến năm học 2021 – 2022, có đáp án và lời giải chi tiết; tài liệu giúp học sinh tham khảo trong quá trình ôn tập chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán. MỤC LỤC : I GIẢI TÍCH 1. Chương 1. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ 2. §1 – Sự đồng biến và nghịch biến của hàm số 2. §2 – Cực trị của hàm số 31. §3 – Giá trị lớn nhất và giá trị nhỏ nhất của hàm số 77. §4 – Đường tiệm cận 96. §5 – Khảo sát sự biến thiên và vẽ đồ thị hàm số 109. Chương 2. HÀM SỐ LŨY THỪA. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT 177. §1 – Lũy thừa 177. §2 – Hàm số lũy thừa 179. §3 – Lôgarit 183. §4 – Hàm số mũ. Hàm số Lôgarit 202. §5 – Phương trình mũ. Phương trình Lôgarit 224. §6 – Bất phương trình mũ và lôgarit 264. Chương 3. NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG 282. §1 – Nguyên hàm 282. §2 – Tích phân 305. §3 – Ứng dụng của tích phân trong hình học 308. Chương 4. SỐ PHỨC 348. §1 – Số phức 348. §2 – Cộng, trừ và nhân số phức 365. §3 – Phép chia số phức 381. §4 – Phương trình bậc hai với hệ số thực 385. II HÌNH HỌC 386. Chương 1. KHỐI ĐA DIỆN 387. §1 – Khái niệm về khối đa diện 387. §2 – Khối đa diện lồi và khối đa diện đều 389. §3 – Khái niệm về thể tích của khối đa diện 390. Chương 2. MẶT NÓN. MẶT TRỤ. MẶT CẦU 437. §1 – Khái niệm về mặt tròn xoay 437. §2 – Mặt cầu 466. Chương 3. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN 480. §1 – Hệ tọa độ trong không gian 480. §2 – Phương trình mặt phẳng 502. §3 – Phương trình đường thẳng trong không gian 530.
Phát triển các câu VD - VDC đề tham khảo thi TN THPT 2022 môn Toán
Tài liệu gồm 488 trang, được biên soạn bởi thầy giáo Đặng Việt Đông (giáo viên Toán trường THPT Nho Quan A, tỉnh Ninh Bình), phát triển các câu vận dụng & vận dụng cao trong đề tham khảo kỳ thi tốt nghiệp THPT năm 2022 môn Toán của Bộ Giáo dục và Đào tạo. Tài liệu có đáp án và lời giải chi tiết, chia phần bài tập và lời giải riêng, phù hợp với đối tượng học sinh khá – giỏi, muốn chinh phục mức điểm 9 – 10 trong kỳ thi tốt nghiệp THPT 2022 môn Toán.
Hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2022 môn Toán
Tài liệu gồm 98 trang, được biên soạn bởi tác giả Trần Minh Quang, hướng dẫn giải toán vận dụng cao (VDC) trong các đề thi thử tốt nghiệp THPT năm 2022 môn Toán. Trích dẫn tài liệu hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2022 môn Toán: + Một bình thủy tinh hình trụ không có nắp, trong bình được xếp vào ba viên bi bằng nhau có bán kính 3dm sao cho các viên bi đều tiếp xúc với đáy, đôi một tiếp xúc nhau và tiếp xúc với đường sinh của bình. Người ta đổ đầy nước vào rồi đặt lên miệng bình một khối lập phương ABCD A B C D đặc, sao cho đường chéo AC có phương vuông góc với mặt đáy của bình và các cạnh AA AB AD tiếp xúc với miệng bình (xem hình vẽ). Sau đó quan sát thấy lượng nước tràn ra ngoài bằng 1 16 lượng nước ban đầu có trong bình. Giả sử chiều dày của vỏ bình không đáng kể, hỏi thể tích của bình thủy tinh gần nhất với số nào sau đây? + Cho hai số thực x và y thỏa mãn x y 2 log log 5 3 3. Biết giá trị nhỏ nhất của biểu thức 1 3 25 x y P là logb a c trong đó a b c là các số tự nhiên b c là số nguyên tố. Tính giá trị của biểu thức T a b c 2 3. + Cho hình lăng trụ tam giác đều 1 1 1 ABC A B C có cạnh đáy AB 5. Gọi M N thứ tự là trung điểm của A B1 1 và AA1. Biết rằng hình chiếu của BM lên đường thẳng C N1 là đoạn thẳng có độ dài bằng 5 2 và chiều 1 AA 3. Tính thể tích của khối lăng trụ 1 1 1 ABC A B C.