Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo tuyển sinh 10 môn Toán 2024 - 2025 phòng GDĐT Bình Tân - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề tham khảo tuyển sinh vào lớp 10 môn Toán năm học 2024 – 2025 phòng Giáo dục và Đào tạo quận Bình Tân, thành phố Hồ Chí Minh; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tham khảo tuyển sinh 10 môn Toán 2024 – 2025 phòng GD&ĐT Bình Tân – TP HCM : + Công ty đồ chơi Bingbon vừa cho ra đời một đồ chơi tàu điện điều khiển từ xa. Trong điều kiện phòng thí nghiệm, quãng đường s t (xen ti mét) đi được của đoàn tàu đồ chơi là một hàm số của thời gian t (giây), hàm số đó là s t 6t 9. Trong điều kiện thực tế người ta thấy rằng nếu đoàn tàu đồ chơi di chuyển quãng đường 12 cm thì mất 2 giây và cứ trong mỗi 10 giây thì nó đi được 52 cm. a) Trong điều kiện thí nghiệm, sau 5 (giây) đoàn tàu đồ chơi di chuyển được bao nhiêu mét? b) Mẹ bé An mua đồ chơi này về cho bé chơi, bé ngồi cách mẹ 2,5 mét. Hỏi cần bao nhiêu giây để đoàn tàu đồ chơi đi từ chỗ mẹ tới chỗ bé? + Bạn Vy đi làm thêm ở tiệm café “Take away NT” với hợp đồng lương tính theo ngày, nếu một ngày bán đủ 50 ly thì bạn sẽ nhận được lương cơ bản 150000 đồng, bên cạnh đó với mỗi ly bán vượt chỉ tiêu, bạn sẽ được thưởng thêm 40% so với tiền lời một ly café. Ngày đầu tiên đi làm bạn nhận được 222000 đồng. Tính số ly café bạn Vy đã bán được trong ngày đầu tiên đi làm, biết rằng tiền lời một ly café là 6000 đồng. + Trái bóng (hình cầu) Telstar xuất hiện lần đầu tiên ở World Cup 1970 ở Mexico do Adidas sản xuất có đường kính 22,3cm. Trái bóng được may từ 32 múi da đen và trắng. Các múi da màu đen hình ngũ giác đều, các múi da màu trắng hình lục giác đều. a) Biết công thức tính diện tích mặt cầu cho bởi công thức 2 S 4R π với R là bán kính hình cầu. Tính diện tích bề mặt của quả bóng Telstar. (làm tròn đến hàng đơn vị) b) Trên bề mặt trái bóng, mỗi múi da màu đen có diện tích 2 37cm. Mỗi múi da màu trắng có diện tích 2 55,9cm. Hãy tính trên trái bóng có bao nhiêu múi da màu đen và màu trắng?

Nguồn: toanmath.com

Đọc Sách

Đề Toán tuyển sinh năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2)
Nội dung Đề Toán tuyển sinh năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2) Đề Toán tuyển sinh năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2) Sytu xin giới thiệu đến quý thầy, cô giáo và các em học sinh đề Toán tuyển sinh lớp 10 năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2). Đây là đề thi được thiết kế dành cho các thí sinh dự thi vào các lớp 10 chuyên Toán – Tin. Đề thi gồm 1 trang với 4 bài toán, thời gian làm bài là 90 phút. Trích dẫn đề Toán tuyển sinh lớp 10 năm 2019 trường chuyên KHTN – Hà Nội (Vòng 2): + Với x, y là các số thực dương thỏa mãn điều kiện 4x^2 + 4y^2 + 17xy + 5x + 5y ≥ 1, tìm giá trị nhỏ nhất của biểu thức: P = 17x^2 + 17y^2 + 16xy. + Cho tam giác ABC cân tại A, có đường tròn nội tiếp (I). Các điểm E, F theo thứ tự thuộc các cạnh CA, AB (E khác C và A; F khác B và A) sao cho EF tiếp xúc với đường tròn (I) tại điểm P. Gọi K, L lần lượt là hình chiếu vuông góc của E, F lên BC. Giả sử FK cắt EL tại điềm J. Gọi H là hình chiếu vuông góc của J lên BC. 1) Chứng minh rằng HJ là phân giác của EHF. 2) Ký hiệu S1 và S2 lần lượt là diện tích của các tứ giác BFJL và CEJK. Chứng minh rằng: S1/S2 = BF^2/CE^2. 3) Gọi D là trung điểm của cạnh BC. Chứng minh rằng ba điểm P, J, D thẳng hàng. + Cho M là tập tất cả 4039 Số nguyên liên tiếp từ -2019 đến 2019. Chứng minh rằng trong 2021 số đôi một phân biệt được chọn bất kì từ tập M luôn tồn tại 3 số đôi một phân biệt có tổng bằng 0.
Đề Toán tuyển sinh năm 2019 2020 trường chuyên Thái Bình (Vòng 2)
Nội dung Đề Toán tuyển sinh năm 2019 2020 trường chuyên Thái Bình (Vòng 2) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh lớp 10 trường chuyên Thái Bình (Vòng 2) Đề Toán tuyển sinh lớp 10 trường chuyên Thái Bình (Vòng 2) Ngày 26 tháng 05 năm 2019, trường THPT chuyên tỉnh Thái Bình đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán cho năm học 2019 – 2020. Đề thi nhằm tuyển chọn các học sinh vào các lớp 10 chuyên Toán – Tin để chuẩn bị cho năm học mới. Đề Toán tuyển sinh lớp 10 năm 2019 – 2020 trường THPT chuyên Thái Bình (Vòng 2) bao gồm 5 bài toán dạng tự luận, thời gian làm bài 150 phút. Trong đề thi, có bài toán như sau: Chứng minh rằng tồn tại điểm I trong mặt phẳng tọa độ và 2019 số thực dương R1, R2 … R2019 sao cho có đúng k điểm nguyên nằm trong đường tròn (I;Rk) với mọi k là số nguyên dương không vượt quá 2019. Trong hình vuông ABCD nội tiếp đường tròn, chứng minh rằng tứ giác EPND nội tiếp một đường tròn, góc EKM = góc DKM, và tính độ dài đoạn thẳng AE khi M là trung điểm của AD. Tìm các nghiệm nguyên (x;y) của phương trình √x + √y = √2020. Đề thi tạo cơ hội cho các thí sinh thể hiện kiến thức và khả năng giải quyết vấn đề trong môn Toán, từ đó đạt kết quả cao và có cơ hội được chọn vào các lớp chuyên Toán – Tin tại trường THPT chuyên Thái Bình.
Đề Toán tuyển sinh vào năm 2019 trường THPT chuyên KHTN Hà Nội
Nội dung Đề Toán tuyển sinh vào năm 2019 trường THPT chuyên KHTN Hà Nội Bản PDF - Nội dung bài viết Đề Toán tuyển sinh vào lớp 10 trường THPT chuyên KHTN, Hà Nội năm 2019 Đề Toán tuyển sinh vào lớp 10 trường THPT chuyên KHTN, Hà Nội năm 2019 Trong kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên Khoa học Tự nhiên, Đại học Quốc gia Hà Nội năm 2019, môn Toán đã được tổ chức vào Chủ Nhật ngày 26 tháng 05. Đề thi bao gồm 4 bài toán dạng tự luận, thời gian làm bài được giới hạn trong 120 phút. Một trong những bài toán được trích dẫn từ đề tuyển sinh là về hình vuông ABCD và đường tròn (O) nội tiếp hình vuông ABCD. Để giải bài toán này, thí sinh cần chứng minh rằng năm điểm A, F, O, C, E cùng nằm trên một đường tròn. Tiếp theo, thí sinh cần chứng minh rằng giao điểm của đường thẳng FB và đường tròn (O) là trung điểm của đoạn thẳng BG. Bài toán còn yêu cầu chứng minh rằng trực tâm tam giác GAF nằm trên đường tròn (O). Bài toán thứ hai yêu cầu tìm giá trị nhỏ nhất của biểu thức M = (x^2 + 4)/(y^2 + 1), với điều kiện 1 ≤ y ≤ 2, xy + 2 ≥ 2y. Cuối cùng, bài toán cuối cùng đưa ra một phương trình đối với các số nguyên x, y, và yêu cầu tìm tất cả các cặp số nguyên thỏa mãn phương trình đó. Đề Toán tuyển sinh vào lớp 10 trường THPT chuyên KHTN Hà Nội năm 2019 là một thách thức đối với các em học sinh làm Toán. Để đạt điểm cao trong kỳ thi, thí sinh cần chuẩn bị kỹ lưỡng và thực hành nhiều bài tập.
Đề Toán tuyển sinh THPT năm 2019 2020 sở GD ĐT Bắc Giang
Nội dung Đề Toán tuyển sinh THPT năm 2019 2020 sở GD ĐT Bắc Giang Bản PDF - Nội dung bài viết Đề Toán tuyển sinh THPT năm 2019 2020 sở GD ĐT Bắc Giang Đề Toán tuyển sinh THPT năm 2019 2020 sở GD ĐT Bắc Giang Vào sáng Chủ Nhật ngày 02 tháng 06 năm 2019, sở Giáo dục và Đào tạo tỉnh Bắc Giang đã tổ chức kỳ thi Toán tuyển sinh vào lớp 10 Trung học Phổ thông năm học 2019-2020. Đề Toán tuyển sinh lớp 10 THPT năm 2019-2020 sở GD&ĐT Bắc Giang được soạn theo dạng đề kết hợp trắc nghiệm khách quan và tự luận. Bài thi bao gồm 20 câu trắc nghiệm và 5 câu tự luận, thời gian làm bài là 120 phút. Trong đề Toán tuyển sinh lớp 10 THPT năm 2019-2020 sở GD&ĐT Bắc Giang, có một số câu hỏi như sau: 1. Hội khuyến học của một tỉnh tặng trường A tổng cộng 245 quyển sách Toán và Ngữ văn. Trường đã dùng một phần số sách để phát cho học sinh có hoàn cảnh khó khăn. Mỗi bạn nhận được một quyển sách Toán và một quyển sách Ngữ văn. Hỏi mỗi loại sách trường A nhận được bao nhiêu quyển? 2. Cho tam giác ABC nội tiếp đường tròn (O), AC là đường kính, B nằm giữa A và C. Đường thẳng BI cắt đường tròn (O) tại D. Kẻ CH vuông góc với BD, DK vuông góc với AC. Hỏi tứ giác DHKC có phải là tứ giác nội tiếp không? 3. Cho x, y thỏa mãn điều kiện x^2 + y^2 = 1. Tìm giá trị nhỏ nhất của biểu thức P = (3 - x)(3 - y). Bài thi Toán tuyển sinh THPT năm 2019-2020 sở GD ĐT Bắc Giang không chỉ đánh giá kiến thức mà còn khuyến khích học sinh tư duy, logic và khả năng giải quyết vấn đề. Đây là bước quan trọng trong việc chọn lựa học sinh có phẩm chất và năng lực học tập tốt cho học kỳ tiếp theo.