Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề hệ hai phương trình bậc nhất hai ẩn

Nội dung Tài liệu lớp 9 môn Toán chủ đề hệ hai phương trình bậc nhất hai ẩn Bản PDF - Nội dung bài viết A. Tóm tắt lý thuyếtB. Bài tập và các dạng toán Tài liệu học Toán lớp 9 - Hệ hai phương trình bậc nhất hai ẩn Tài liệu này gồm 11 trang, cung cấp kiến thức cơ bản, các dạng toán và bài tập liên quan đến chủ đề hệ hai phương trình bậc nhất hai ẩn trong chương trình môn Toán lớp 9. Mỗi bài toán được kèm theo đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết 1. Khái niệm về hệ phương trình bậc nhất hai ẩn Hệ phương trình bậc nhất hai ẩn có dạng ax + by = c và a'x + b'y = c'. Trong đó, a, b, a', b' là các số thực và x, y là các ẩn. Nếu hai phương trình có nghiệm chung (x, y), thì (x, y) được gọi là nghiệm của hệ phương trình. Nếu không có nghiệm chung, hệ phương trình sẽ là vô nghiệm. Giải hệ phương trình là tìm tất cả các nghiệm của hệ đó. 2. Minh họa hình học của tập nghiệm của hệ phương trình bậc nhất hai ẩn Tập nghiệm của hệ phương trình được biểu diễn bởi các điểm chung của hai đường thẳng. Nếu hai đường thẳng cắt nhau, hệ phương trình có một nghiệm duy nhất. Nếu hai đường thẳng song song, hệ phương trình sẽ vô nghiệm. Nếu hai đường thẳng trùng nhau, hệ phương trình sẽ có vô số nghiệm. 3. Tổng quát về hệ phương trình bậc nhất hai ẩn Hệ phương trình có nghiệm duy nhất khi hệ số không bằng nhau. Hệ phương trình vô nghiệm khi hệ số bằng nhau nhưng hệ số tự do không bằng nhau. Hệ phương trình có vô số nghiệm khi hệ số và hệ số tự do đều bằng nhau. 4. Hệ phương trình tương đương Hai hệ phương trình được xem là tương đương nếu chúng có cùng tập nghiệm. B. Bài tập và các dạng toán Dạng 1: Dự đoán số nghiệm của hệ phương trình bậc nhất hai ẩn Giúp học sinh xác định số nghiệm có thể của hệ phương trình dựa vào các hệ số. Dạng 2: Kiểm tra một cặp số có phải là nghiệm của hệ phương trình hay không Gợi ý cách xác định xem một cặp số có phải là nghiệm của hệ phương trình hay không. Dạng 3: Giải hệ phương trình bằng phương pháp đồ thị Hướng dẫn vẽ đồ thị của hai đường thẳng và xác định nghiệm của hệ phương trình từ đó. Bài tập trắc nghiệm và bài tập về nhà cũng được cung cấp để học sinh có thể tự luyện tập và kiểm tra kiến thức của mình. Tài liệu còn được cung cấp dưới dạng file Word để giáo viên dễ dàng sử dụng trong quá trình giảng dạy.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề rút gọn biểu thức chứa căn thức bậc hai
Tài liệu gồm 44 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề rút gọn biểu thức chứa căn thức bậc hai, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 1 bài số 8. A. KIẾN THỨC TRỌNG TÂM Để rút gọn biểu thức chứa căn bậc hai ta thường thực hiện các bước sau: + Bước 1: Tìm điều kiện xác định của biểu thức (nếu đề chưa cho điều kiện). Chú ý điều kiện căn thức, điều kiện mẫu và điều kiện phần chia. + Bước 2: Phân tích mẫu thành nhân tử, kết hợp phân tích tử bằng các phép biến đổi đơn giản. + Bước 3: Bỏ ngoặc, thu gọn các biểu thức một cách hợp lý. Kết hợp điều kiện bài toán để kết luận. B. CÁC DẠNG BÀI MINH HỌA I. CÁC DẠNG TOÁN Bài toán rút gọn tổng hợp thường có các bài toán phụ: tính giá trị biểu thức khi cho giá trị của ẩn; tìm điều kiện của biến để biểu thức lớn hơn (nhỏ hơn) một số nào đó; tìm giá trị của biến để biểu thức có giá trị nguyên; tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức … Do vậy, ta phải áp dụng các phương pháp tương ứng, thích hợp cho từng dạng toán. Dạng toán 1 . Rút gọn biểu thức. Dạng toán 2 . Rút gọn biểu thức – tính giá trị của biểu thức khi cho giá trị của ẩn. Các bước thực hiện: + Rút gọn, chú ý điều kiện của biểu thức. + Rút gọn giá trị của biến nếu cần. + Thay vào biểu thức rút gọn. Dạng toán 3 . Rút gọn biểu thức – tìm x để biểu thức rút gọn đạt giá trị nguyên. + Rút gọn biểu thức. + Lấy tử chia cho mẫu tách biểu thức thành tổng của một số nguyên và một biểu thức có tử là một số nguyên. + Trong biểu thức mới tạo thành, ta cho mẫu là các ước nguyên của tử để suy ra x. Dạng toán 4 . Rút gọn biểu thức – tìm x để biểu thức thỏa bằng hoặc lớn hơn (nhỏ hơn) một số cho trước. + Rút gọn. + Cho biểu thức rút gọn thỏa điều kiện ta được phương trình hoặc bất phương trình, chú ý điều kiện của ẩn trong bài toán. Dạng toán 5 . Rút gọn biểu thức – tìm x để biểu thức đạt giá trị lớn nhất (GTLN), giá trị nhỏ nhất (GTNN). + Rút gọn. + Biến đổi biểu thức về dạng: Số không âm + hằng số rồi suy ra GTNN; Hằng số – số không âm rồi suy ra GTLN; Sử dụng bất đẳng thức Cô-si. Dạng toán 6 . Nâng cao phát triển tư duy. II. TRẮC NGHIỆM RÈN PHẢN XẠ
Chuyên đề biến đổi đơn giản biểu thức chứa căn thức bậc hai
Tài liệu gồm 32 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề biến đổi đơn giản biểu thức chứa căn thức bậc hai, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 1 bài số 6 – 7. A. KIẾN THỨC TRỌNG TÂM 1. Đưa thừa số ra ngoài dấu căn. 2. Đưa thừa số vào trong dấu căn. 3. Khử mẫu của biểu thức lấy căn. 4. Trục căn thức ở mẫu. 5. Rút gọn biểu thức có chứa căn bậc hai. B. CÁC DẠNG TOÁN MINH HỌA I. DẠNG BÀI MINH HỌA + Dạng toán 1. Biến đổi đơn giản biểu thức chứa căn thức bậc hai các dạng cơ bản. + Dạng toán 2. Nâng cao phát triển tư duy. II. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ III. BÀI TẬP TỰ LUYỆN
Chuyên đề liên hệ giữa phép nhân - phép chia và phép khai phương
Tài liệu gồm 37 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề liên hệ giữa phép nhân và phép khai phương, liên hệ giữa phép chia và phép khai phương, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 1 bài số 3 – 4. A. KIẾN THỨC TRỌNG TÂM B. CÁC DẠNG TOÁN + Dạng toán 1. Thực hiện phép tính. + Dạng toán 2. Rút gọn biểu thức và tính giá trị biểu thức. + Dạng toán 3. Giải phương trình. + Dạng toán 4. Nâng cao phát triển tư duy. C. TRẮC NGHIỆM RÈN PHẢN XẠ CÁC DẠNG
Chuyên đề nhắc lại và bổ sung các khái niệm về hàm số
Tài liệu gồm 18 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề nhắc lại và bổ sung các khái niệm về hàm số, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 1. A. KIẾN THỨC CẦN NHỚ 1. Khái niệm hàm số. Nếu đại lượng y phụ thuộc vào đại lượng x thay đổi sao cho với mỗi giá trị của x, ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x (x gọi là biến số). 2. Giá trị của hàm số, điều kiện xác định của hàm số. Giá trị của hàm số f(x) tại điểm x0 kí hiệu là y0 = f(x0). Điều kiện xác định của hàm số y = f(x) là tất cả các giá trị của x sao cho biểu thức f(x) có nghĩa. 3. Đồ thị của hàm số. Đồ thị của hàm số y = f(x) là tập hợp tất cả các điểm M(x;y) trong mặt phẳng tọa độ Oxy sao cho x, y thỏa mãn hệ thức y = f(x). 4. Hàm số đồng biến và hàm số nghịch biến. Cho hàm số y = f(x) xác định với mọi giá trị x thuộc R. Nếu giá trị của biến x tăng lên mà giá trị y = f(x) tương ứng cũng tăng lên thì hàm số y = f(x) được gọi là đồng biến trên R. Nếu giá trị của biến x tăng lên mà giá trị y = f(x) tương ứng lại giảm đi thì hàm số y = f(x) được gọi là nghịch biến trên R. B. CÁC DẠNG BÀI CƠ BẢN VÀ NÂNG CAO Dạng 1. Tính giá trị của hàm số tại một điểm. Dạng 2. Biểu diễn tọa độ của một điểm trên mặt phẳng tọa độ Oxy. Dạng 3. Xét sự đồng biến và nghịch biến của hàm số. Dạng 4. Nâng cao và phát triển tư duy. C. TỰ LUYỆN D. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ