Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp phân tích thành nhân tử trong việc giải phương trình lượng giác - Trần Thông

Phương trình lượng giác là vấn đề quan trọng và quen thuộc trong chương trình toán học bậc THPT cũng như trong các đề thi tuyển sinh đại học. Việc giải thành thạo phương trình lượng giác đã trở thành nhiệm vụ và cũng là mong muốn của mọi học sinh. Tuy nhiên, sự phong phú của công thức lượng giác đã gây khó khăn cho học sinh trong việc định hướng lời giải. Nếu định hướng không tốt sẽ dẫn đến biến đổi vòng vo, không giải được hoặc lời giải sẽ dài dòng, không đẹp. Cản trở này phần nào làm nản chí các em học sinh. Một số em đã sợ học và xác định bỏ phần phương trình lượng giác. Với mong muốn giúp học sinh khắc phục khó khăn này, tôi viết bài viết này. Bài viết đưa ra một số định hướng biến đổi phương trình dựa trên những dấu hiệu đặc biệt. Nhờ đó học sinh nhanh chóng tìm ra lời giải của bài toán, tiết kiệm thời gian, tự tin hơn trước các phương trình lượng giác. Bài viết được chia thành ba phần: [ads] + Phần A: Trình bày sự cần thiết và nội dung bài viết + Phần B: Nội dung bài viết, phần này chia thành các mục nhỏ dưới đây I. Nhận dạng nhân tử chung dựa vào đẳng thức cơ bản II. Phương trình bậc 2 đối với sinx, cosx III. Nhẩm nghiệm đặc biệt để xác định nhân tử chung IV. Sử dụng công thức đặc biệt V. Thay thế hằng số bằng đẳng thức lượng giác + Phần C: Trình bày một số bài tập tương tự.

Nguồn: toanmath.com

Đọc Sách

Phân dạng và giải chi tiết 99 câu trắc nghiệm chuyên đề lượng giác - Nguyễn Nhanh Tiến
Tài liêu gồm 24 trang phân dạng và giải chi tiết 99 bài toán trắc nghiệm chọn lọc chủ đề hàm số lượng giác và phương trình lượng giác chương trình Đại số và Giải tích 11. Các dạng toán trong tài liệu gồm có: 1. Tập xác định của hàm số lượng giác • y = f(x)/g(x) có nghĩa khi và chỉ khi g(x) ≠ 0 • y = √f(x) có nghĩa khi và chỉ khi f(x) ≥ 0 • y = f(x)/√g(x) có nghĩa khi và chỉ khi g(x) > 0 2. GTLN và GTNN Của Hàm Số Lượng Giác • −1 ≤ sinx ≤ 1; 0 ≤ (sinx)^2 ≤ 1 • −1 ≤ cos x ≤ 1; 0 ≤ (cosx)^2 ≤ 1 • |tanx+cot x| ≥ 2 • Hàm số dạng y = a(sinx)^2 + bsinx + c (tương tự cosx, tanx …) tìm max min theo hàm bậc 2 (lập bảng biến thiên) • Dùng phương trình asinx + bcosx = c có nghiệm x ∈ R khi và chỉ khi a^2 + b^2 ≥ c^2 • Với hàm số y = asinx + bcosx ta có kết quả: ymax = √(a^2 + b^2), ymin = −√(a^2 + b^2) • Hàm số có dạng: y = (a1.sinx + b1.cosx + c1)/(a2.sinx + b2.cos x + c2) ta tìm tập xác định. Đưa về phương trình dạng: asinx + bcosx = c [ads] 3. Tính chẵn lẻ Của Hàm Số Lượng Giác Để xác định tính chẵn lẻ của hàm số lượng giác ta thực hiện theo sau: + Bước 1: Tìm tập xác định D của hàm số, khi đó: • Nếu D là tập đối xứng (Tức ∀x ∈ D ⇒ −x ∈ D), ta thực hiện tiếp bước 2 • Nếu D không là tập đối xứng (Tức ∃x ∈ D mà −x ∈/ D), ta kết luận hàm số không chẵn không lẻ + Bước 2: Xác định f(−x) khi đó: • Nếu f(−x) = f(x) kết luận là hàm số chẵn • Nếu f(−x) = −f(x) kết luận là hàm số lẻ • Ngoài ra kết luận là hàm số không chẵn cũng không lẻ 4. Tính Tuần Hoàn Của Hàm Số Lượng Giác • Hàm số y = sin(ax + b) và y = cos(ax + b) với a ≠ 0 tuần hoàn với chu kì: 2π/|a| • Hàm số y = tan(ax + b) và y = cot(ax + b) với a 6= 0 tuần hoàn với chu kì: π/|a| • Hàm số f(x), g(x) tuần hoàn trên tập D có các chu kì lần lượt a và b với a, b ∈ Q. Khi đó F(x) = f(x) + g(x), G(x) = f(x)g(x) cũng tuần hoàn trên D • Hàm số F(x) = m. f(x) + n.g(x) tuần hoàn với chu kì T là BCNN của a,b 5. Phương Trình Lượng Giác Cơ Bản u, v là các biểu thức của x, x là số đo của góc lượng giác: • sinu = sinv ⇔ u = v + 2kπ hoặc x = π − v + k2π • cosu = cos v ⇔ u = ±v + k2π • tanu = tanv ⇔ u = v + kπ • cotu = cot v ⇔ u = v + kπ• Muốn tìm số điểm (vị trí) biểu diễn của x lên đường tròn lượng giác thì ta đưa về dạng x = α +k2π/n. Kết luận số điểm là n, với k, l ∈ Z
Chuyên đề trắc nghiệm hàm số lượng giác và phương trình lượng giác - Nguyễn Đại Dương
Tài liệu gồm 24 với nội dung gồm: + Tóm tắt lý thuyết, công thức lượng giác và cách giải các phương trình lượng giác cơ bản + 129 bài tập trắc nghiệm hàm số và phương trình lượng giác + 5 bài tập tự luận phương trình lượng giác
50 câu trắc nghiệm chuyên đề Lượng giác - Bùi Thế Việt
50 câu trắc nghiệm chuyên đề Lượng giác – Bùi Thế Việt
Phương trình lượng giác trong đề thi Đại học - Huỳnh Đức Khánh
Các nội dung chính của tài liệu: + Phần 1: Các công thức cơ bản + Phần 2: Các công thức liên hệ + Phần 3: 5 Dạng phương trình lượng giác cơ bản + Phần 4: Một vài thủ thuật + Phần 5: Đề thi Đại học 2002 → 2012 + Phần 6: 100 Đề thi thử trên toàn quốc