Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải chi tiết 214 bài toán trắc nghiệm ứng dụng thực tiễn - Trần Thông

Tài liệu gồm 120 trang với 214 bài toán ứng dụng thực tiễn có đáp án và lời giải chi tiết. Trích dẫn tài liệu : + Một công ty muốn làm một đường ống dẫn từ một điểm A trên bờ đến một điểm B trên một hòn đảo. Hòn đảo cách bờ biển 6km. Giá để xây đường ống trên bờ là 50.000USD mỗi km, và 130.000USD mỗi km để xây dưới nước. B’ là điểm trên bờ biển sao cho BB’ vuông góc với bờ biển. Khoảng cách từ A đến B’ là 9km. Vị trí C trên đoạn AB’ sao cho khi nối ống theo ACB thì số tiền ít nhất. Khi đó C cách A một đoạn bằng? [ads] + Có một tấm gỗ hình vuông cạnh 200 cm. Cắt một tấm gỗ có hình tam giác vuông, có tổng của một cạnh góc vuông và cạnh huyền bằng hằng số từ tấm gỗ trên sao cho tấm gỗ hình tam giác vuông có diện tích lớn nhất. Hỏi cạnh huyền của tấm gỗ này là bao nhiêu? + Nhân ngày phụ nữ Việt Nam 20 -10 năm 2017, ông A quyết định mua tặng vợ một món quà và đặt nó vào trong một chiếc hộp có thể tích là 32 (đvtt) có đáy hình vuông và không có nắp. Để món quà trở nên thật đặc biệt và xứng đáng với giá trị của nó ông quyết định mạ vàng cho chiếc hộp, biết rằng độ dạy lớp mạ tại mọi điểm trên hộp là như nhau. Gọi chiều cao và cạnh đáy của chiếc hộp lần lượt là h, x. Để lượng vàng trên hộp là nhỏ nhất thì giá trị của h, x phải là?

Nguồn: toanmath.com

Đọc Sách

Bài toán thực tế liên quan đến hình học Nguyễn Bá Hoàng
Nội dung Bài toán thực tế liên quan đến hình học Nguyễn Bá Hoàng Bản PDF - Nội dung bài viết Bài toán thực tế liên quan đến hình học Bài toán thực tế liên quan đến hình học Tài liệu này bao gồm 45 trang với các bài toán thực tế xoay quanh hình học, như tính toán đường đi ngắn nhất, diện tích lớn nhất, và tính toán diện tích và thể tích của các vật. Nội dung kiến thức: Cung cấp công thức tính chu vi, diện tích của các hình, và thể tích của các khối hình. Giải thích cách tìm giá trị lớn nhất, nhỏ nhất của hàm số trên một đoạn, khoảng, nửa đoạn, nửa khoảng. Hướng dẫn ứng dụng tích phân để tính diện tích hình phẳng và thể tích của khối tròn xoay. Ví dụ minh hoạ: Tài liệu này cung cấp 17 ví dụ minh họa có phân tích và lời giải chi tiết. Bài tập đề nghị: Gồm 83 bài toán trắc nghiệm thực tế liên quan đến hình học để học viên ôn tập và kiểm tra kiến thức. Hướng dẫn và đáp án: Tài liệu cung cấp hướng dẫn chi tiết và đáp án cho các bài tập, giúp học viên hiểu rõ hơn về nội dung hình học thực tế.
Bài toán thực tế và bài toán tối ưu min max Lê Viết Nhơn
Nội dung Bài toán thực tế và bài toán tối ưu min max Lê Viết Nhơn Bản PDF - Nội dung bài viết Bài toán thực tế và bài toán tối ưu min max Bài toán thực tế và bài toán tối ưu min max Trong tài liệu đặc biệt này, thầy Lê Viết Nhơn đã tổng hợp 23 trang về các bài toán thực tế và bài toán tối ưu min - max, với mục đích giúp học sinh hiểu rõ hơn về những vấn đề này. Phần 1 của tài liệu tập trung vào bài toán thực tế tối ưu, giúp người đọc có cái nhìn tổng quan về cách tiếp cận và giải quyết các vấn đề thực tế một cách tối ưu nhất. Phần 2 và Phần 3 của tài liệu bao gồm các bài toán thực tế liên quan đến tích phân, mũ, và logarit, giúp học sinh áp dụng kiến thức toán học vào các bài toán hàng ngày. Cuối cùng, Phần 4 chứa các bài tập rèn luyện được trích từ đề thi thử các trường THPT, giúp học sinh ôn tập và cải thiện kỹ năng giải bài toán. Với các ví dụ như việc gấp tấm kẽm thành hình lăng trụ, xác định vị trí điểm M để diện tích hình chữ nhật lớn nhất, và vấn đề thả cá trên một đơn vị diện tích hồ, tài liệu này không chỉ giúp học sinh hiểu rõ về bài toán tối ưu min - max mà còn giúp họ áp dụng kiến thức vào thực tế một cách linh hoạt và sáng tạo.
Hướng dẫn ôn tập kỳ thi THPT Quốc gia 2016 2017 môn Toán Đoàn Quỳnh
Nội dung Hướng dẫn ôn tập kỳ thi THPT Quốc gia 2016 2017 môn Toán Đoàn Quỳnh Bản PDF - Nội dung bài viết Hướng dẫn ôn tập kỳ thi THPT Quốc gia 2016-2017 môn Toán Đoàn Quỳnh Hướng dẫn ôn tập kỳ thi THPT Quốc gia 2016-2017 môn Toán Đoàn Quỳnh Sách ôn tập này bao gồm 246 trang và được chia thành 2 phần chính: Phần 1: Ôn tập theo chủ đề: Phần này tập trung vào việc ôn lại những kiến thức cơ bản, kỹ năng quan trọng cần thiết cho kỳ thi THPT Quốc gia môn Toán. Ngoài ra, sách cũng cung cấp một số câu hỏi trắc nghiệm theo 7 chủ đề chương trình Toán lớp 12. Điều này giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải các bài toán một cách hiệu quả. Phần 2: Một số đề tự luyện: Phần này cung cấp 9 đề thi tự luyện, được biên soạn theo đề minh họa của Bộ Giáo dục và Đào tạo đã được công bố. Đây là cơ hội tuyệt vời để học sinh tự kiểm tra năng lực và chuẩn bị tốt nhất cho kỳ thi sắp tới. Sách được xuất bản bởi Nhà xuất bản Giáo dục Việt Nam, đảm bảo chất lượng và tính chính xác trong từng bài học. Đây sẽ là nguồn tư liệu hữu ích không chỉ cho học sinh mà còn cho giáo viên và các bậc phụ huynh quan tâm đến việc chuẩn bị cho kỳ thi quan trọng này.
Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán Trần Công Diêu
Nội dung Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán Trần Công Diêu Bản PDF - Nội dung bài viết Giới thiệu sách "Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán Trần Công Diêu" Giới thiệu sách "Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán Trần Công Diêu" Sách "Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán Trần Công Diêu" là một tài liệu giáo trình toán học cung cấp kiến thức chi tiết và cụ thể về 11 chuyên đề quan trọng trong môn Toán. Với tổng cộng 449 trang, sách bao gồm các chuyên đề sau: + Chuyên đề 1: Ứng dụng đạo hàm + Chuyên đề 2: Hàm số lũy thừa, mũ và logarit + Chuyên đề 3: Nguyên hàm, tích phân và ứng dụng + Chuyên đề 4: Số phức + Chuyên đề 5: Hình học không gian + Chuyên đề 6: Phương pháp tọa độ trong không gian + Chuyên đề 7: Lượng giác + Chuyên đề 8: Đại số tổ hợp và xác suất + Chuyên đề 9: Giới hạn, liên tục + Chuyên đề 10: Hình học Oxy + Chuyên đề 11: Phương trình, bất phương trình đại số Đây là nguồn tư liệu hữu ích để học sinh, sinh viên củng cố kiến thức Toán một cách hiệu quả, giúp họ nắm vững và áp dụng các kiến thức lý thuyết vào thực hành trắc nghiệm. Nội dung sách được biên soạn một cách dễ hiểu, giúp người đọc tiếp cận môn học một cách tự tin và hiệu quả.