Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập đề thi tuyển sinh môn Toán sở GD ĐT Quảng Bình (2013 2024)

Nội dung Tuyển tập đề thi tuyển sinh môn Toán sở GD ĐT Quảng Bình (2013 2024) Bản PDF - Nội dung bài viết Tuyển tập đề thi Toán sở GD ĐT Quảng Bình (2013-2024) Tuyển tập đề thi Toán sở GD ĐT Quảng Bình (2013-2024) Tài liệu tuyển tập đề thi Toán sở GD ĐT Quảng Bình (2013-2024) gồm 44 trang, được tổng hợp bởi thầy giáo Nguyễn Minh Hiếu. Tài liệu này bao gồm các đề thi tuyển sinh vào lớp 10 môn Toán của Sở Giáo dục và Đào tạo tỉnh Quảng Bình từ năm 2013 đến năm 2024. Mỗi đề thi đi kèm đáp án và lời giải chi tiết, giúp học sinh tự kiểm tra và cải thiện kỹ năng Toán của mình. Mục lục của tài liệu được chia thành hai phần chính. Phần I là các đề thi tuyển sinh từ năm 2012 đến năm 2024, mỗi năm đều có một đề thi cụ thể. Phần II là phần lời giải, cung cấp đầy đủ giải pháp cho từng câu hỏi trong đề thi. Điều này giúp học sinh hiểu rõ cách giải các bài tập và áp dụng vào thực hành một cách hiệu quả. Với tài liệu này, học sinh không chỉ có cơ hội ôn tập kiến thức môn Toán mà còn nắm vững cấu trúc đề thi tuyển sinh của Sở GD ĐT Quảng Bình. Đồng thời, cũng giúp giáo viên và phụ huynh có thêm tài liệu tham khảo để hỗ trợ học sinh trong quá trình học tập và ôn luyện.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào năm 2023 2024 trường THCS Minh Khai Hà Nội
Nội dung Đề thi thử Toán vào năm 2023 2024 trường THCS Minh Khai Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2023-2024 trường THCS Minh Khai Hà Nội Đề thi thử Toán vào năm 2023-2024 trường THCS Minh Khai Hà Nội Cảm ơn quý thầy cô và các em học sinh lớp 10 đã quan tâm đến đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023-2024 trường THCS Minh Khai, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 24 tháng 02 năm 2023. Trích dẫn một số câu hỏi trong đề thi: + Cho đường thẳng (d): y = -x + 2m - 1. a) Tìm m để đường thẳng (d) đi qua điểm Q(1;-2). b) Tìm m để đường thẳng (d) và đường thẳng (d'): y = 2x − 3 cắt nhau tại một điểm nằm về phía bên trái trục tung. + Cho tam giác ABC. Đường tròn (O) nội tiếp tam giác ABC tiếp xúc BC, AB lần lượt tại D và E. a) Chứng minh bốn điểm B, D, O, E cùng thuộc một đường tròn. b) Kẻ đường kính DF của (O). Tiếp tuyến của (O) tại F cắt AB, AC lần lượt tại P và Q. Chứng minh tam giác BOP vuông. c) Kéo dài AF cắt BC tại M. Chứng minh rằng BD = CM. + Cho a, b, c là độ dài ba cạnh của tam giác thoả mãn: 2c + b = abc. Hãy tìm giá trị nhỏ nhất của biểu thức P.
Đề thi thử Toán vào chuyên năm 2023 trường THCS Cầu Giấy Hà Nội
Nội dung Đề thi thử Toán vào chuyên năm 2023 trường THCS Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào lớp 10 chuyên năm 2023 trường THCS Cầu Giấy Hà Nội Đề thi thử Toán vào lớp 10 chuyên năm 2023 trường THCS Cầu Giấy Hà Nội Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT chuyên năm học 2022 – 2023 tại trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 28 tháng 02 năm 2023. Dưới đây là một số câu hỏi trích dẫn từ Đề thi thử Toán vào lớp 10 chuyên năm 2023 trường THCS Cầu Giấy – Hà Nội: Cho \(P(x)\) là đa thức với hệ số nguyên thỏa mãn \(P(2021) \times P(2022) = 2023\). Hỏi đa thức \(P(x)\) có nghiệm nguyên hay không? Cho tam giác \(ABC\) nhọn không cân (AB < AC) có các đường cao \(AD\), \(BE\), \(CF\) cắt nhau tại \(H\). Xác định các điểm \(P\), \(Q\) trên \(BE\), \(CF\) sao cho \(EFPQ\) là hình bình bình hành có giao điểm của hai đường chéo là \(H\). Tiếp đến, xác định điểm \(K\), \(L\) là giao điểm của đường tròn ngoại tiếp tam giác \(DPQ\) với \(BE\), \(CF\), và điểm \(I\) là trung điểm của \(AC\). Chứng minh một số tính chất của các điểm và đường tròn đề cập. Trong 100 số lẻ đầu tiên từ 1 đến 199, tìm số tự nhiên \(k\) nhỏ nhất sao cho khi chọn \(k\) số tùy ý, luôn có ít nhất 2 số mà một trong 2 là bội của số còn lại. Hy vọng rằng đề thi trên sẽ giúp các em học sinh ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em đạt kết quả cao trong kỳ thi!
Đề thi thử Toán vào năm 2023 2024 trường THPT Chu Văn An Thái Nguyên
Nội dung Đề thi thử Toán vào năm 2023 2024 trường THPT Chu Văn An Thái Nguyên Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2023-2024 trường THPT Chu Văn An Thái Nguyên Đề thi thử Toán vào năm 2023-2024 trường THPT Chu Văn An Thái Nguyên Xin chào quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến bạn đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023-2024 của trường THPT Chu Văn An, Thái Nguyên. Đề thi bao gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài là 120 phút (không tính thời gian phát đề). Trích dẫn đề thi thử Toán vào lớp 10 năm 2023-2024 trường THPT Chu Văn An - Thái Nguyên: Nhiệt độ Trái Đất tăng cao sẽ gây hậu quả nghiêm trọng, làm thay đổi mực nước biển toàn cầu và ảnh hưởng đến đời sống con người. Nghiên cứu cho thấy từ năm 1950, nhiệt độ Trái Đất tăng theo công thức: T = 0,02t + 15. Hãy tính nhiệt độ vào các năm 1950 và 2023. Cho hàm số bậc nhất y = (1 – 2m)x + 4m + 1 với m là tham số. Tìm m để hàm số đồng biến trên R và cắt trục Oy tại điểm A(0;1). Trong tam giác ABC vuông tại A, gọi O là tâm đường tròn ngoại tiếp tam giác và d là tiếp tuyến của đường tròn (O) tại A. Tiếp tuyến của (O) tại B, C cắt d tại D, E. Chứng minh BC là tiếp tuyến của đường tròn đường kính DE. Chúc các em học sinh ôn tập tốt và làm bài thi thật tốt nhé!
Đề thi thử Toán vào lần 2 năm 2023 2024 trường Lương Thế Vinh Hà Nội
Nội dung Đề thi thử Toán vào lần 2 năm 2023 2024 trường Lương Thế Vinh Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào lần 2 năm 2023-2024 trường Lương Thế Vinh Hà Nội Đề thi thử Toán vào lần 2 năm 2023-2024 trường Lương Thế Vinh Hà Nội Chào đón quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2023-2024 của trường THCS & THPT Lương Thế Vinh, Hà Nội. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm để giúp các em ôn tập hiệu quả. Đề thi sẽ diễn ra vào Chủ Nhật, ngày 27 tháng 02 năm 2023. Dưới đây là một số câu hỏi mẫu trong đề thi: 1. Một con chim bói cá đậu trên cành cây cao 3m so với mặt nước hồ. Nếu chim nhìn thấy con cá bơi sát mặt nước và lao xuống để bắt cá với góc tạo bởi đường bay của chim và mặt hồ là 10°, hỏi khoảng cách ban đầu của chúng là bao nhiêu mét? 2. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai vòi nước chảy vào một bể trống, biết rằng vòi thứ nhất chảy 1 giờ, sau đó vòi thứ hai chảy 45 phút nữa thì đầy 3/4 bể. Nếu mở vòi thứ nhất 15 phút trước khi mở vòi thứ hai chảy thêm 30 phút, thì bể sẽ đầy 13/24. Hỏi mỗi vòi riêng chảy thì sau bao lâu bể sẽ đầy? 3. Cho parabol y = x^2 và đường thẳng y = mx + 6. a) Với m=2: - Tìm giao điểm của đường thẳng và Parabol. - Gọi các giao điểm trên là A và B. Tính độ dài hình chiếu vuông góc của đoạn AB trên trục Ox. b) Tìm các giá trị nguyên của m để đường thẳng cắt Parabol tại hai điểm phân biệt. Đây chỉ là một số câu hỏi mẫu trong đề thi. Hy vọng đề thi sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em may mắn và thành công!